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Abstract

We consider the problem of maximizing both effectiveness and efficiency of

the detection of a device by another device in a mobile ad hoc network, given a

maximum amount of time that they remain in the proximity of each other. Effec-

tiveness refers to the degree to which the detection is successful, while efficiency

refers to the degree to which the detection is energy saving. Our motivation

lies in the emergence of a new trend of mobile applications known as proximity-

based mobile applications which enable a user to communicate with other users

in some defined range and for a certain amount of time. The highly dynamic

nature of these applications makes neighbor detection time-constrained, i.e.,

even if a device remains in proximity for a limited amount of time, it should

be detected with a high probability as a neighbor. In addition, the limited bat-

tery life of mobile devices requires the neighbor-detection to be performed by

consuming as little energy as possible. To address this problem, we perform

a realistic simulation-based study in mobile ad hoc networks and we consider

three typical urban environments where proximity-based mobile applications are

used, namely indoor with hard partitions, indoor with soft partitions and outdoor

urban areas. In our study, a node periodically broadcasts a message in order

to be detected as a neighbor. Thus, we study the effect of parameters that we

believe could influence effectiveness and efficiency, i.e., the transmission power

and the time interval between two consecutive broadcasts. Our results show that

regardless of the environment, effectiveness and efficiency are in conflict with

each other. Thus, we propose a metric that can be used to make good tradeoffs

between effectiveness and efficiency.
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1. Introduction

With the increasing use of mobile devices and particularly smartphones,

we face the emergence of a new blend of distributed applications known as

Proximity-Based Mobile (PBM ) applications [10, 11, 12]. These applications

enable a user to interact with others in a defined range and for a given time

duration e.g., for social networking (WhosHere [53], LoKast [31]), gaming (Blue-

tooth gaming apps [8]) and driving (Waze [52]).

Discovering who is nearby is a basic requirement of various PBM appli-

cations. In a simple usage scenario of social networking applications such as

WhosHere [53] or LoKast [31], a user can discover other users in a defined

range, view their profiles and chat with a user or a group of users with her

phone. Usually, the highly dynamic nature of these applications (which is basi-

cally due to the mobility of devices) makes neighbor detection time-constrained,

i.e., even if a device remains in proximity for a limited amount of time, it should

be detected with a high probability as a neighbor. In addition, the limited bat-

tery life of mobile devices requires the neighbor-detection to be performed by

consuming as little energy as possible.

In this paper, we consider the following problem: how can a device be de-

tected by another device with both maximum effectiveness and maximum effi-

ciency, given a maximum amount of time that they remain in proximity of each

other? If not, how can an effectiveness-efficiency tradeoff be made? Effective-

ness refers to the degree to which the detection is successful and is measured

by the detection probability, while efficiency refers to the degree to which the

detection is energy saving and is measured by the inverse of energy consumption

per device. To address this problem, we evaluate effectiveness and efficiency in

a single-hop mobile ad hoc network (MANET). The evaluations are performed

under realistic assumptions and based partly on simulations using the ns-2 [37]

network simulator.1

There are two main reasons behind our choice of a MANET as the underlying

network architecture. Firstly, MANETs seem to be the most natural existing

technology to enable PBM applications. In fact, similarly to PBM applications,

in a MANET two nodes can communicate if they are within a certain distance of

each other (to have radio connectivity) for a certain amount of time. Secondly,

mobile devices are increasingly equipped with ad hoc communications capabil-

ities (e.g., WiFi in ad hoc mode or Bluetooth) which increases the chance of

1The version 2.35 (the latest version), released on November 4, 2011.
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MANETs to be one of the future mainstream technologies for PBM applications.

Since the quality of radio signals (and consequently the detection proba-

bility) is affected by the environment attenuation, for our study we consider

three typical urban environments where PBM applications are used, i.e., indoor

with hard partitions (corresponding to offices with thick walls), indoor with soft

partitions (corresponding to exhibitions with temporary partitions) and out-

door urban areas (corresponding to a music festival in downtown). To simulate

these environments, we use a radio propagation model known for modeling the

obstructed urban environments called Log-Normal Shadowing (LNS).

In our study, a node periodically broadcasts a hello message during a fixed

time interval in order to be detected as a neighbor. We assume that the nodes

use the IEEE 802.11a standard for the physical and mac layer. Thus, we study

the impact of two key parameters that influence effectiveness and efficiency, i.e.,

the transmission power and the time interval between two consecutive broad-

casts. In performing the evaluations, we are particularly interested to answer

the following questions:

• In each environment, when does a change in the value of any of the above

mentioned parameters increase effectiveness and efficiency, or on the con-

trary, when does it deteriorate them?

• In each environment, is there a unique combination of these parameters that

could maximize both effectiveness and efficiency? If not, how could a tradeoff

between effectiveness and efficiency be made?

1.1. Contributions and Roadmap

This paper is, to the best of our knowledge, the first study on the impact

of transmission power and broadcast interval on effectiveness and efficiency of

neighbor detection for MANETs in urban environments. It provides a detailed

simulation study and defines the metrics that can be used to interpret the re-

sults. In order for our results to be close to reality, the study is performed under

realistic assumptions. For one thing, we use 802.11a technology for communica-

tion between nodes and we assume a probabilistic radio propagation model for

urban environments. Furthermore, we calculate the energy consumption using

the specification of typical smartphones.

The remainder of the paper is as follows. In Section 2, we describe our system

model. In particular, we define the neighbor detection algorithm, which takes

transmission power and broadcast interval (this pair constitutes a strategy) as

input. In Section 3, we formulate the problem studied in this paper. It basically
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consists of finding the most effective and the most efficient strategy in each

environment. If these strategies are not equal in an environment, we intend

to find a strategy that makes a reasonable tradeoff between effectiveness and

efficiency. We also define the set of strategies for which the effectiveness and

efficiency are evaluated. In Section 4, we evaluate the effectiveness for the set

of predefined strategies. We also discuss the impact of changing transmission

power and broadcast interval on effectiveness. Finally, we identify the most

effective strategy in each environment. In Section 5, we evaluate the efficiency

for the set of predefined strategies. We show that efficiency is independent of

the environment and we discuss the impact of changing transmission power and

broadcast interval on efficiency. Finally, we identify the most efficient strategy.

In Section 6, we compare the results of Sections 4 and 5. We observe that we

cannot find a strategy that maximizes both effectiveness and efficiency in any

environment. The reason is that, regardless of environment, effectiveness and

efficiency are in conflict with each other. We then propose an approach to make

a tradeoff between effectiveness and efficiency. Using this approach, we find the

tradeoff strategy in each environment and we show that it has a relatively good

effectiveness and efficiency compared to other strategies. Finally, we discuss

related work in Section 7 before concluding in Section 8 with a perspective on

future work.

2. System Model

In this section, we present the system model, and whenever necessary, we

describe the reasons behind our modeling choices.

2.1. Processes

We consider a mobile ad-hoc network (MANET) consisting of a finite set of n

processes P = {p1, ..., pn}. We use the terms process and node interchangeably.

Processes are in a two-dimensional plane. Each process has a unique identifier

and is aware of its own geographic location at any time. Processes can experience

crash failures. A crash faulty process stops prematurely. Prior to stopping, it

behaves correctly. Since we do not consider Byzantine behaviors, information

security and privacy issues are beyond the scope of this paper.

2.2. Time

We assume the existence of a discrete global clock, i.e., the clock’s tick range

is the set of non-negative integers. Every process has a local clock which has
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the same clock’s tick range as the global clock and runs at the same rate as the

global clock, but its time value has some offset from the global time.

2.3. Communication

We consider a single-hop network i.e., without any message routing mecha-

nism. Processes communicate by broadcasting messages using the IEEE 802.11a

MAC and physical layers [2, 28]. The current WiFi technology used in mo-

bile devices is based on three IEEE standards, i.e., 802.11a, 802.11b, 802.11g.

There are two main reasons for our choice of 802.11a over the other standards:

(1) 802.11b/g operate in the 2.4 GHz frequency band which is heavily used

not only by WiFi devices but also by other devices such as microwave ovens

and DECT phones whereas, 802.11a operates in the relatively unused 5 GHz

frequency band. Thus, using 802.11a results in less interference and better

throughput. This makes 802.11a an appealing technology for ad hoc commu-

nication in urban areas where PBM applications are mostly used; (2) the most

recent IEEE 802.11 standard, i.e., 802.11ac also operates in 5 GHz frequency

band [3] and uses some similar modulation schemes and coding rates for broad-

cast as 802.11a. Thus, using 802.11a allows us to have the results which are

close to those that could be obtained with the new standard.

Finally, we assume that each process has a buffer (a queue) that stores

messages after their generation and before their broadcast. The size of the

queue and the messages are such that the queue never remains full long enough

to cause it to drop a message.

2.4. Environment

We consider three typical urban environments where PBM applications are

used, namely indoor with hard partitions (corresponding to offices with thick

walls), indoor with soft partitions (corresponding to exhibitions with tempo-

rary partitions) and outdoor urban areas (corresponding to a music festival in

downtown). In our study, we use a probabilistic model called the Log-Normal

Shadowing (LNS) for the radio propagation in an urban environment [40]. LNS

uses a log-normal random variable to describe the variations of the received

power and has two parameters, i.e., the path loss exponent (β) and the shad-

owing deviation (σ) to characterize each environment. The path loss exponent

(β) captures the average signal attenuation due to effects such as absorption,

refraction, diffraction, reflection, etc. The shadowing deviation (σ) captures the

radio irregularity. If (σ = 0), the radio propagation range is a perfect circle,

but as σ grows, its shape changes from a circle to a more random and irregular
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Table 1: Values of LNS Parameters for each Environment.

Environment β σ (dB)

Indoor-hard partitions 5.5 7

Indoor-soft partitions 5 9.6

Outdoor-urban 4 5.5

shape which reflects what happens in reality, i.e., in the presence of not perfectly

isotropic antennas and the obstacles that cut the transmission range [36]. For

our evaluations, we consider a distinct pair of (β, σ) values for each environ-

ment (see Table 1). These pairs are chosen based on the measurements in the

literature [40].

2.5. Neighbor Detection Algorithm

Each process pi executes the neighbor detection algorithm. The algorithm has

two input parameters: the time duration ∆period and the transmission power

powtx. There is also a constant R which defines the detection range. The

algorithm divides time into rounds of ∆period. At the beginning of each round,

pi broadcasts a hello message containing the tuple (i, roundNo, loc) where

roundNo is the number of the current round and loc is the location of pi at

time when hello is sent.

When a process pj receives a hello message sent by pi, it verifies if its distance

to pi is less than or equal to R. If it is the case, pi is detected as a neighbor

at its round roundNo by pj . This means that if pi is in the neighborhood of

pj since its first round of broadcasting the hello message, we can say that pi is

detected after being in the neighborhood of pj for time duration of roundNo ×
∆period. Note that here we ignore the elapsed time between the sending and the

reception of the hello message, which obviates the use of a time synchronization

algorithm. Also, since we consider a single-hop network, pj can only detect pi

as a neighbor if R is smaller than or equal to the actual transmission range of

pi.

In what follows, for simplicity’s sake, we designate by the term strategy an

ordered pair (powtx, ∆period) which can be considered as a possible input of the

neighbor detection algorithm.

3. Problem Statement

We characterize neighbor detection by two main aspects:
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• Effectiveness is defined as the degree to which the neighbor detection is suc-

cessful and is measured by the detection probability. Thereby, maximizing

effectiveness boils down to maximizing the detection probability.

• Efficiency is defined as the degree to which the detection is energy saving

and is measured by the inverse of energy consumption per process. Thereby,

maximizing efficiency boils down to minimizing the energy consumption per

process.

Thus, the problem we consider in this paper can be specified as follows. Let

∆neighborhood be the maximum amount of time that a node pi remains contin-

uously within the detection range R of a node pj , then, for each environment,

our goal is to find:

• the most effective strategy, i.e., the strategy that maximizes the effectiveness

of detection of pi by pj ;

• the most efficient strategy, i.e., the strategy that maximizes the efficiency of

detection during ∆neighborhood;

• the tradeoff strategy, i.e., the strategy that makes a tradeoff between effec-

tiveness and efficiency in the case that the most effective strategy is not the

same as the most efficient strategy.

We address the problem by evaluating the effectiveness and the efficiency for

a set S of predefined strategies and ∆neighborhood = 4 seconds.

Since the majority of current PBM applications run on smartphones, for

defining the strategies in S and later in our evaluations, we use the character-

istics of current smartphones. For instance, regarding power consumption, we

use the specifications of Broadcom’s wireless network interface cards [13]. In

fact, in a mobile device, a wireless network interface card (denoted by WNIC )

is the component that implements the MAC and the physical layers of the OSI

model. Broadcom’s WNICs are one of the most used WNICs in the current

mobile devices and specially smartphones, e.g., Broadcom’s BCM 4330 WNIC

is used in both Samsung Galaxy S II and iPhone 4S [4].

Thus, let strategy s = (powtx, ∆period) be an element of S. Then, powtx can

take a value of 15 dBm, 19 dBm or 25 dBm. The first two values are based on

specifications of Broadcom’s BCM 4329 and BCM 4330 WNICs, whereas the

last value presents the possible performance gain of more powerful radio trans-

mitters [49]. Also, ∆period can take a value of 1 second, 1/2 second, 1/4 second

or 1/12 second. These values have been selected after our preliminary tests
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which show that they can present our results in a useful manner. Considering

all the combinations of the above mentioned values of powtx and ∆period, the

set S contains 12 strategies.

The reason behind the choice of 4 seconds for ∆neighborhood is that current

PBM applications usually guarantee the detection of a person even if she re-

mains in neighborhood for a very limited amount of time. Therfore, we choose

∆neighborhood to be reasonably short.

We also assume that each hello message has a size of 500 bytes. This value is

chosen by considering the possibility that each message can be digitally signed

and accompanied by a certificate to authenticate the sender (i.e., using a similar

mechanism for message authentication as the one used for safety messages in

vehicular ad hoc networks [41]). As stated earlier, in this paper we do not study

the security and privacy issues. However, we choose the messages to be large

enough so that our results remain valid for more general cases.

4. Evaluation of Effectiveness

Effectiveness is measured by the neighbor detection probability. Thus, in

this section we first describe our approach to calculate the detection probability

of each strategy, which is based on simulations. Then, we present our simulation

setup and the results. In particular, while presenting the results, we discuss how

a change in powtx or ∆period can affect the detection probability in each envi-

ronment. We also define two packet dropping metrics that we use to interpret

the results. Finally, we compare the effectiveness of the strategies and present

the most effective strategy in each environment.

4.1. Approach to Calculate the Neighbor Detection Probability

We calculate the resulting detection probability of each strategy by perform-

ing simulations with ns-2 simulator. Each simulation takes a strategy s and an

environment e as the input and produces as the output the detection probability

at time t for all t ∈ [0, ∆neighborhood].

More precisely, let s = (powtx, ∆period) and e = (β, σ), at the beginning

of a simulation we initialize the neighbor detection algorithm at all nodes with

powtx and ∆period. We also initialize the radio propagation model with β and

σ. Since the value of ∆neighborhood is the same while testing different strategies,

instead of using nodes with movement, we consider static nodes which broadcast

the hello message only during ∆neighborhood. However, since each node’s local

clock has some offset with respect to the global clock, nodes do not start and
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finish broadcasting at the same time. We only verify the detection probability

at certain predefined nodes called Reference Nodes or RNs. Intuitively, the

longer a node remains in the neighborhood, the more it broadcasts the hello

message, and thus it has more chance to be detected. Therefore, the neighbor

detection probability at each RN is calculated as a cumulative probability and

is an increasing function of time during which a node remains in the neighbor-

hood. More precisely, given time t ∈ [0, ∆neighborhood], the neighbor detection

probability at t for a RN is equal to the number of all nodes that are detected

by RN after being in the neighborhood for time t, divided by the number of all

nodes that are in the neighborhood. Finally, since we use a probabilistic radio

propagation model, for each t ∈ [0, ∆neighborhood], we take the average of the

detection probability at t over all RNs. As the result, we have the values of the

average of the detection probability during [0, ∆neighborhood] which constitute

the output of the simulation.

Note that since we use a probabilistic radio propagation model, two simu-

lations that have the same strategy and environment as the input do not nec-

essarily result in the same output. Thereby, to have a good estimation of the

corresponding detection probability of a strategy s in an environment e, we take

the average of the outputs of five simulations which have s and e as the input.

We explain this in more detail in Section 4.2 after defining the simulation setup.

4.2. Simulation Setup

We choose the total number of nodes and the location of RNs such that

we can estimate the detection probability in the worst case, i.e., where the

communication interference and collisions are at the maximum. In fact, if a

strategy maximizes the neighbor detection probability in the worst case, we can

assume that it maximizes the neighbor detection probability in all cases.

Thus, we consider a square of 100 m width filled with 1000 static nodes

located using a uniform random distribution.2 RNs are the nodes located at

the distance less than or equal to 5 m from the center of the square. The reason

is that the nodes that are close to the center, usually experience the maximum

radio interference. The total number of nodes is chosen after studying the

2In urban environments, a node’s movement may depend on another node’s movement

(e.g., if they move in a group). A node can also move on predefined paths or sidewalks [5].

Therefore, topology changes are not always random. However, using a distribution that char-

acterizes such behaviors, requires a particular deployment scenario, i.e., the physical properties

of the terrain, the points of interest, etc. Thus, we believe that a random distribution gives a

good generic basis for the evaluation.
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occupancy load factors of urban surfaces [16]. In architecture and urbanism, the

occupancy load factor of a given urban surface defines the maximum number of

persons which can occupy one unit area of that surface. The occupancy load

factor of an urban surface is mainly defined based on its usage (e.g., residential,

office, public assembly, etc...). Although, the occupancy load factors of the

urban environments that we consider in this paper are slightly different from

one another, 1000 seems to be a good approximation of the maximum number

of persons that usually occupy these environments.

For the radio propagation model, we use the implementation of LNS model

in ns-2. In a simulation, all nodes have the same idealized transmission range3

since they are all initialized with a given value of powtx. Moreover, even with

our lowest powtx choice, the idealized transmission range is large enough so that

all nodes are within the idealized transmission range of each other. Each RN

has the detection range of 30 m. This value is chosen such that even using our

lowest powtx choice, the detection range is less than the idealized transmission

range. Fig. 1 depicts the simulation map with only one RN.

For the implementation of 802.11a in ns-2, we use the implementation per-

formed by a team from Mercedes-Benz Research and Development North Amer-

ica and University of Karlsruhe [15]. This implementation includes a completely

revised and enhanced architecture for physical and MAC layers to improve the

drawbacks of the 802.11 default support in ns-2. In particular, this implementa-

tion for the physical layer comprises cumulative received signal power over noise

(SINR) computation. Its mac layer also accurately implements the CSMA/CA

(Carrier Sense Multiple Access with Collision Avoidance) mechanism.

Thus, we use the default values of this implementation for physical and mac

layers [15], however, we disable both preamble and frame body capture features.4

For data rate, we consider 6 Mbps using Binary Phase-Shift Keying (BPSK )

modulation scheme and 1/2 coding rate. In fact, more advanced schemes imply

3The idealized transmission range corresponds to the deterministic transmission range

calculated for idealized deterministic channel conditions i.e., with no node movement and no

obstacles between the sender and the receiver(s).
4Capture feature, which is present in some WNICs, can mitigate the effect of collisions

to some degrees. Roughly speaking, when a packet collision happens, the capture feature

enables the receiver to capture one of the collided packets if certain conditions are fulfilled.

The existing WNICs differ in the extent of supporting capturing techniques [29, 15]. There

exist two variants of the capture feature (i.e., the preamble and the frame body capture)

in the simulator that we use. However, according to our preliminary tests, enabling these

features only increases the chance of packet reception with the same percentage across different

strategies and thus, does not influence our conclusions.
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Figure 1: Simulation Map

higher data rates but also require better received signal quality which reduces

the number of receivable packets in the case of 802.11 broadcasts where no

acknowledgment or RTS/CTS (Request to Send/Clear to Send) mechanism exist

to cope with interferences and collisions.

Based on our assumptions in Section 3, the size of a hello packet is set to

500 bytes. If messages are generated while previously generated messages are

not yet transmitted, the new messages are stored in an interface queue that

is capable of storing up to 100 packets. This queue size is chosen such that

regardless of the used strategy, no message is dropped by the queue.

To obtain the detection probability for a strategy s in an environment e, we

perform five simulations with s and e as the input and with five different pairs

of seeds. In fact, in each simulation one seed is used to initialize the random

number generator of the LNS model and the other is used to initialize the ran-

dom number generator responsible for the randomness of topologies. Thereby,

for each simulation, we have a different topology (with different RNs) and a

LNS model which is seeded differently. Then, we take the average of the five

simulations’ outputs. The result is considered as the detection probability for

the strategy s in the environment e. Recall that the output of a simulation is

the average (over all RNs in that simulation) of the neighbor detection proba-

bility at time t for all t ∈ [0, 4] seconds. Therefore, the detection probability

for the strategy s in the environment e is the average (over all RNs in the five

simulations) of the neighbor detection probability at time t for all t ∈ [0, 4]

seconds.

Note that according to our preliminary tests, with five simulations we already

achieve an average that accurately presents the detection probability in each

setting. In fact, with five simulations the resulting standard deviation in all
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cases is very low (in order of 10−2).

4.3. Results

According to our simulation results, a node which is situated at a maximum

distance of 15 m from a RN, is detected with a high probability (at least 0.8) in

all environments. The reason is that at close distances (i.e., up to 15 m), in all

environments, the signal strength of a received packet is usually high enough to

resist interferences. Therefore, in this section we only discuss the detection of

the nodes situated at a distance between 15 m to 30 m from a RN (see Fig. 1

on page 11).

Fig. 2 on page 13, depicts, as an example, the results for Strategy (15 dBm,

1/4 Sec) in different environments. As shown in the figure and already described

in Section 4.1, the neighbor detection probability is an increasing function of

time. We also observe that for the same strategy, the detection probability

increases as we change the environment from the indoor with hard partitions to

indoor with soft partions and then to outdoor urban. This is because the radio

signals are attenuated the most in indoor with hard partitions and the least in

outdoor urban.

The fact that the neighbor detection probability is calculated as a cumula-

tive probability and is an increasing function of time enables us to only take into

account its last value (i.e., the value at second 4) when comparing the effective-

ness of different strategies. Thereby, for the sake of simplicity, we use henceforth

the term neighbor detection probability while referring to the neighbor detection

probability at second 4.

Intuitively, in a given environment increasing powtx and decreasing ∆period

should lead to the most effective strategy. In fact, by increasing powtx, the

packets are transmitted with a more powerful signal and accordingly they bet-

ter survive the interferences and environmental attenuations. Also, decreas-

ing ∆period increments the total number of sent hellos and thus increases the

chance of reception. However, simulations show that this is not always true i.e.,

changing the values of powtx and ∆period, will not always affect the detection

probability in all environments in the same way. However, in certain cases we

observe similar behaviors for some range of values, e.g., increasing powtx for

a given ∆period seems to increase the detection probability for the majority of

cases (see Fig. 4 on page 13), whereas decreasing ∆period for a given powtx

might result in unpredictable behaviors (see Fig. 5 on page 13). To understand

the reason behind these similarities and differences, we study the mechanism

of packet drops by 802.11 physical layer. Based on our study, we define two

12



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

D
e

te
c
ti
o

n
 P

ro
b

a
b

ili
ty

Time (sec)

(15 dBm,1/4 Sec) Indoor-hard
(15 dBm,1/4 Sec) Indoor-soft

(15 dBm,1/4 Sec) Outdoor-urban

Figure 2: Same strategy in different environments. The

vertical error bars present the standard deviation for the

detection probability

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(15dBm,1Sec) (15dBm,1/2Sec) (15dBm,1/4Sec) (15dBm,1/12Sec)

P
e
rc

e
n
ta

g
e
 (

%
)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(19dBm,1Sec) (19dBm,1/2Sec) (19dBm,1/4Sec) (19dBm,1/12Sec)

P
e
rc

e
n
ta

g
e
 (

%
)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(25dBm,1Sec) (25dBm,1/2Sec) (25dBm,1/4Sec) (25dB,1/12Sec)

P
e
rc

e
n
ta

g
e
 (

%
)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(15dBm,1Sec) (15dBm,1/2Sec) (15dBm,1/4Sec) (15dBm,1/12Sec)

P
e
rc

e
n
ta

g
e
 (

%
)

WPP ICPP

Figure 3: Values of packet dropping metrics for different

strategies in the indoor with hard partitions environment

(A) Indoor with Hard Partitions (B) Indoor with Soft Partitions (C) Outdoor Urban

 0

 0.2

 0.4

 0.6

 0.8

 1

 13  15  17  19  25  27

D
e
te

ct
io

n
 P

ro
b
a
b
ili

ty

powtx (dBm)

 0

 0.2

 0.4

 0.6

 0.8

 1

 13  15  17  19  25  27

D
e
te

ct
io

n
 P

ro
b
a
b
ili

ty

powtx (dBm)

 0

 0.2

 0.4

 0.6

 0.8

 1

 13  15  17  19  25  27

powtx (dBm)

∆period = 1 (sec1)
∆period = 1/2 (sec)
∆period = 1/4 (sec)

∆period = 1/12 (sec)

 0

 0.2

 0.4

 0.6

 0.8

 1

 13  15  17  19  25  27

D
e
te

ct
io

n
 P

ro
b
a
b
ili

ty

powtx (dBm)

 0

 0.2

 0.4

 0.6

 0.8

 1

 13  15  17  19  25  27

powtx (dBm)

∆period = 1 (sec1)
∆period = 1/2 (sec)
∆period = 1/4 (sec)

∆period = 1/12 (sec)

 0

 0.2

 0.4

 0.6

 0.8

 1

 13  15  17  19  25  27

powtx (dBm)

∆period = 1 (sec1)
∆period = 1/2 (sec)
∆period = 1/4 (sec)

∆period = 1/12 (sec)

Figure 4: Impact of increasing powtx on the detection probability in different environments
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metrics that can be used to interpret the results in each environment. In the

following, we first present the metrics and we show, as an example, how they

can be used to interpret the results in one particular environment, i.e., indoor

with hard partitions. Then, based on the interpretation of the results of different

environments using our metrics, we present our general observations on how a

change in powtx or ∆period can affect the detection probability.

4.3.1. Packet Dropping Metrics

Before defining our metrics, we present an overview of the packet dropping

mechanism by 802.11 physical layer. When a packet arrives from the channel to

the physical layer of the receiver, its received signal power over noise (SINR) is

compared to a constant threshold called SINR threshold.5 The threshold value

depends on the modulation scheme and the coding rate.6 If there is only one

sender, the noise is equal to the noise floor, which is the sum of the thermal

noise of the system plus some additional noise caused by losses in the receiver

hardware (e.g. in the antenna cables or electronic parts) [44, 15]. However, if

there are other senders which send at the same time, their packets could be

sensed by the receiver and increase the noise. If the SINR of a packet is less

than the threshold, no reception process is triggered and the packet is dropped.

A packet could also be dropped due to collisions. In this case, a packet is in

the reception process, but another packet arrives. If the second packet is strong

enough to corrupt the first packet by augmenting the background noise, both the

first and the second packets are dropped, otherwise the second packet is dropped

and the first packet reception continues. Thus, to explain our simulation results

we define two following metrics.

• Weak Packets Percentage (WPP). This is the average percentage of all weak

packets that arrive to a RN’s physical layer out of all sent packets by nodes

in a distance of 15 m to 30 m through a simulation. By weak packets, we

5The packet dropping mechanism described in this section is drawn from the SINR-based

reception model which is adopted by many network simulators (including the simulator that

we use). In this model the SINR threshold values are obtained by experimental measurements

using real hardware. For more information about this model see [7, 15].
6Different modulation schemes and coding rates can be used while transmitting the PLCP

(Physical Layer Convergence Procedure) header and the data frame of a 802.11a physical layer

packet. Accordingly, the SINR threshold used at the reception can be different for the PLCP

header and the data frame. However, since in our simulations we use the same modulation

scheme (i.e., BPSK) and coding rate (i.e., 1/2) for both the PLCP header and the data frame,

in our description we only consider one SINR threshold.
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mean packets which have a low power when they arrive to the physical layer

such that even without any interference from other nodes, their SINR is lower

than the SINR threshold.

• Interfered or Collided Packets Percentage (ICPP). This is the average per-

centage of all interfered or collided packets out of all sent packets by nodes

in a distance of 15 m to 30 m to a RN through a simulation. By interfered

packets, we mean all packets which have an acceptable SINR for reception

if there is no interference but their SINR is lower than the SINR threshold

because of the interference of other nodes. By collided packets, we mean all

packets which are dropped due to collision.

WPP and ICPP are not disjoint i.e., there are packets which are weak but

have collided with the reception of another packet. WPP is a function of powtx

and the environment attenuation (characterized by LNS parameters). ICPP is a

function of ∆period, powtx and the environment attenuation. A sent packet could

also be dropped if it arrives when the receiver’s physical layer is in transmission

state. However, according to our preliminary evaluations, the percentage of

such packets is very low, so we simply ignore them. In addition, in our prelimi-

nary experiments, we defined other metrics which are not related to the packet

dropping, e.g., average backoff time at senders, however WPP and ICPP seem

to interpret the results in a more clear way.

4.3.2. Metrics-based Interpretation of the Results

We now interpret the results for indoor with hard partitions environment

using our defined metrics. By using this example, we show how these metrics can

help us to understand the behavior of the detection probability under different

strategies. Our discussion is based on the measurements depicted in Fig. 3,

Fig. 4–A and Fig. 5–A (all the figures can be found on page 13). In particular,

in Fig. 3, the values of the defined metrics for different strategies in indoor with

hard partitions environment are presented.

• Increasing powtx for a given ∆period. As shown in Fig. 3, as we increase powtx

from 15 dBm to 19 dBm and then to 25 dBm, the value of WPP decreases,

which means that the percentage of weak (non-receivable) packets that arrive

to the physical layer of the receiver decreases. On the other hand, as we in-

crease powtx, for the same ∆period, the value of ICPP increases. The reason

is that increasing powtx results in more powerful packets arriving to the phys-

ical layer, which can interfere or collide with other packets’ reception. So, we

observe that when we increase powtx considerably, i.e., from 15 dBm or 19
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dBm to 25 dBm (recall that dBm is a logarithmic scale), the detection prob-

ability increases regardless of the value of ∆period (see Fig. 4–A). However,

when we increase powtx from 15dBm to 19dBm, the detection probability

improves differently under different values of ∆period. For instance, as shown

in Fig. 4–A, when ∆period = 1/12 second, increasing powtx from 15 dBm to

19 dBm does not improve the detection probability as much as it improves

under ∆period = 1 second. The reason is that under small values of ∆period,

the value of ICPP is high i.e., many packets are dropped because of collisions

and interferences and therefore a small increase in powtx cannot improve the

detection probability significantly.

• Decreasing ∆period for a given powtx. As depicted in Fig. 3, the value of WPP

remains the same when decreasing ∆period. This is not surprising since WPP

is a function of powtx and the environment attenuation and is independent

from ∆period. On the other hand, when decreasing ∆period, the value of ICPP

increases since more packets arrive per second to the physical layer of the

receiver, which increases the chance of collisions and interferences. However,

collisions do not have the same impact in the presence of different values of

WPP. For instance, as shown in Fig. 3, when powtx = 15 dBm the value of

WPP = 96%. In this case, even if the number of collisions increases, a large

number of collided packets will be weak (non-receivable) packets. Therefore,

decreasing ∆period increments the reception chance of the powerful packets.

As depicted in Fig. 5–A, with powtx = 15 dBm, the detection probability at

∆period = 1/12 second is greater than the detection probability at ∆period

= 1 second and almost equal to the detection probability at ∆period = 1/4

second. However, when the value of WPP is relatively low, collisions have

a more significant impact and can decrease the detection probability e.g., as

shown in Fig. 3, when powtx = 25 dBm, the value of WPP=75%. In this

case, the detection probability at ∆period = 1/12 second is even less than the

detection probability at ∆period = 1 second (see Fig. 5–A).

4.3.3. Impact of Changing powtx and ∆period on Neighbor Detection Probability

After interpreting all results by using the packet dropping metrics, we reach

the following general observations regarding the impact of increasing powtx and

decreasing ∆period on the detection probability.

• Increasing powtx for a given ∆period. For a fixed ∆period, increasing powtx

considerably, i.e., from 15 dBm or 19 dBm to 25 dBm, increases the detection

probability in all environments (see Fig. 4 on page 13). Increasing powtx
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from 15 dBm to 19 dBm, improves the neighbor detection under high values

of ∆period (e.g., for 1 second), but under low values of ∆period (e.g., for 1/12

second), it has less effect and can even lead to no improvement. For instance,

as shown in Fig. 4–B, in indoor with soft partitions environment, under ∆period

= 1 second, increasing power from 15 dBm to 19 dBm increases the detection

probability from 0.4612 to 0.6539 (i.e., about 41.78% increase), whereas under

∆period = 1/12 second, increasing powtx from 15 dBm to 19 dBm has almost

no influence on the detection probability. This is because under low values of

∆period, the number of collisions and interferences is relatively high.

Furthermore, although in all environments, increasing powtx improves the

detection probability, in general, the improvement becomes less significant

as we move from a more obstructed environment to a less obstructed envi-

ronment. For instance, under ∆period = 1 second, increasing powtx from 15

dBm to 25 dBm in the indoor with hard partitions environment increases

the detection probability by a factor of 5.66 (see Fig. 4–A), whereas, in the

outdoor-urban environment, it increases the detection probability by a factor

of 1.13 (see Fig. 4–C). In fact, as the environment becomes less obstructed,

packets do not need to be transmitted with a very powerful signal to resist the

environmental attenuation, thus, increasing powtx results in a less significant

improvement of the detection probability.

• Decreasing ∆period for a given powtx. For a fixed value of powtx, decreasing

∆period could have different impacts on the detection probability depending on

the environment (see Fig. 5 on page 13). For instance, in indoor environments,

decreasing ∆period down to a certain value (e.g., 1/4 second in indoor with hard

partitions) can increase the detection probability. However, below this value

the detection probability starts to decrease due to the increase in collisions

and interferences. In outdoor urban, decreasing ∆period generally decreases

the detection probability. This is because the packets are less attenuated by

the environment (compared to indoor environments) and a good percentage

of them arrive to the receiver’s physical layer with acceptable SINR. Thus,

decreasing ∆period only increases collisions and prevents the reception of the

acceptable packets.

4.3.4. The Most Effective Strategy

Fig. 6 on page 18, depicts the strategies ranked in descending order with

respect to their resulting detection probability in different environments. As

shown, the most effective strategy is not the same in all environments. More

precisely, Strategy (25 dBm, 1/4 Sec), Strategy (25 dBm, 1/2 Sec) and Strategy

17



 0

 0.2

 0.4

 0.6

 0.8

 1

(25dBm
,1/4Sec)

(25dBm
,1/2Sec)

(25dBm
,1Sec)

(25dBm
,1/12Sec)

(19dBm
,1/4Sec)

(19dBm
,1/2Sec)

(19dBm
,1/12Sec)

(19dBm
,1Sec)

(15dBm
,1/4Sec)

(15dBm
,1/12Sec)

(15dBm
,1/2Sec)

(15dBm
,1Sec)

D
e

te
ct

io
n

 P
ro

b
a

b
ili

ty

Strategy

(A) Indoor with Hard Partitions

 0

 0.2

 0.4

 0.6

 0.8

 1

(25dBm
,1/2Sec)

(25dBm
,1Sec)

(25dBm
,1/4Sec)

(19dBm
,1/4Sec)

(19dBm
,1/2Sec)

(19dBm
,1Sec)

(15dBm
,1/4Sec)

(15dBm
,1/2Sec)

(25dBm
,1/12Sec)

(19dBm
,1/12Sec)

(15dBm
,1/12Sec)

(15dBm
,1Sec)

D
e

te
ct

io
n

 P
ro

b
a

b
ili

ty

Strategy

(B) Indoor with Soft Partitions

 0

 0.2

 0.4

 0.6

 0.8

 1

(25dBm
,1Sec)

(25dBm
,1/2Sec)

(19dBm
,1Sec)

(25dBm
,1/4Sec)

(19dBm
,1/2Sec)

(15dBm
,1Sec)

(15dBm
,1/2Sec)

(19dBm
,1/4Sec)

(15dBm
,1/4Sec)

(25dBm
,1/12Sec)

(19dBm
,1/12Sec)

(15dBm
,1/12Sec)

D
e

te
ct

io
n

 P
ro

b
a

b
ili

ty

Strategy

(C) Outdoor Urban

Figure 6: Strategies ranked in the descending order with respect to their corresponding detection probability in different environments

Table 2: Effectiveness rank and ratio of the strategies in different environments
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In
d

o
o
r-

h
a
rd

Ratio 0.16 0.27 0.37 0.35 0.41 0.57 0.61 0.49 0.90 0.99 1 0.67

Rank 12 8 7 11 6 5 4 10 2 1 3 9
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d
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Ratio 0.54 0.70 0.74 0.60 0.76 0.862 0.864 0.61 0.962 1 0.961 0.69

Rank 6 7 9 12 3 5 8 11 1 2 4 10
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Ratio 0.88 0.87 0.77 0.33 0.95 0.93 0.85 0.38 1 0.99 0.94 0.67

(25 dBm, 1 Sec) are respectively the most effective strategies in indoor with hard

partitions, indoor with soft partitions and outdoor urban areas. These results

are justified by our observations in Section 4.3.3.

Based on the detection probability comparisons, for a given strategy s and

environment e, we defined the following metrics:

• Effectiveness rank. This rank is out of 12 strategies in set S and is based

on the ranking in Fig. 6, i.e., in descending order with respect to detection

probability. The effectiveness rank of the most effective strategy is 1.
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• Effectiveness ratio. This is the ratio of the detection probability of s to the de-

tection probability of the most effective strategy in environment e. Informally

speaking, it compares the effectiveness of s to the maximum effectiveness that

can be achieved in environment e. The effectiveness ratio of the most effective

strategy is 1.

Table 2 on page 18, depicts the effectiveness ranks and ratios of the strate-

gies in different environments. We use these metrics later in Section 6 when

discussing the tradeoff between effectiveness and efficiency.

5. Evaluation of Efficiency

Efficiency is measured by the inverse of energy consumption per process.

Therefore, in this section we first define a model of energy consumption and

then design an algorithm that, based on the model, calculates for each strategy

the energy consumption per process. After describing the algorithm, we present

the results and we discuss how a change in powtx or ∆period can affect the energy

consumption. Finally we compare the efficiency of the strategies and present

the most efficient strategy.

5.1. Energy Consumption Model

Communication is the primary cause of energy consumption of a node exe-

cuting the neighbor detection algorithm. Since 802.11 (or WiFi) communication

is considered one of the main causes of the battery discharge in mobile devices

[33, 30], in this section we only consider the energy consumption of the 802.11a

wireless network interface card (or WNIC). As already described in Section 3,

WNIC is the component that implements the MAC and the physical layers of

the OSI model in a mobile device. To calculate the energy consumption of the

WNIC for each strategy, we first define its energy consumption model as below.

Power is defined as the amount of energy consumed per unit of time. It is

known that a 802.11 WNIC exhibits different power consumptions at different

radio modes. Therefore, in order to define the energy consumption model of the

WNIC, we should first identify its different radio modes.

In this paper, we assume that the WNIC does not use any power saving

mechanism for the IEEE 802.11 distributed coordination function (DCF). In

fact, according to the power saving mechanism of the 802.11 standard, the

WNIC sleeps most of the time and wakes up periodically to check whether

there are some packets that it should transmit or receive. During the sleep

mode no transmission or reception is possible and the power consumption is
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extremely low. Thus, If a node has a packet to transmit, it should buffer the

packet and waits until the next wake-up time [1]. In this paper, we do not

use the power saving mechanism for two main reasons. First, waking up at

the right moment requires the nodes to have synchronized clocks. Second, the

power saving mechanism is known to perform poorly when the number of nodes

is high. In fact, at the wake-up time, a sender node should first announce the

list of the buffered packets to destinations. The announcement is performed

by sending an ad-hoc traffic indication map (ATIM ) packet. As the number of

nodes increases, more ATIM transmissions could take place at the same time

which result in more collisions and hence lower performance [43]. Although

some researchers proposed new power saving mechanisms without some of these

limitations (for instance, schemes that work with asynchronous clocks [25, 55]),

in this paper for simplicity’s sake we do not use any of these mechanisms. We

might consider their potential use in our future work.

Thus, we assume that the WNIC can only operate in one of three radio

modes, namely, transmit, receive and idle [1]. As their names suggest, the

transmit and the receive modes correspond respectively to the cases where the

WNIC transmits or receives a packet. In general, power consumption in the

transmit mode is different from power consumption in the receive mode, since

different circuits are used in these modes [38]. In the idle mode, the WNIC is

required to continuously sense the medium. Thus, intuitively the power con-

sumption in the idle mode should be similar to the power consumption in the

receive mode. The experimental results in [19] confirm this fact and show that

the power consumption in the idle mode is only slightly different from the power

consumption in the receive mode. Therefore, we assume that in the idle mode,

the WNIC consumes the same amount of power as in the receive mode. This

assumption results in two general radio modes:

• Active mode. This mode is characterized by power consumption powactive and

corresponds to the cases where WNIC is in the transmit mode.

• Passive mode. This mode is characterized by power consumption powpassive

and corresponds to the cases where the WNIC is either in the idle or the

receive modes.

Knowing these two general radio modes, the energy consumption model can

be specified as follows. Let Ttotal be the time duration for which the energy

consumption of WNIC is defined. Then, Ttotal can be split into Tactive and

Tpassive, which denote respectively the duration spent in the active and passive
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modes. Since power consumption of each mode is known, the energy consump-

tion of each mode can be calculated separately. Let Etotal denote the total

energy consumption of WNIC during Ttotal, then Etotal can be found by sum-

ming Epassive and Eactive, where Epassive and Eactive denote respectively the

energy consumption in the active and passive modes [14].

5.2. Energy Consumption Calculation Algorithm

To obtain the energy consumption of the WNIC for different strategies, we

devise an algorithm called energy consumption calculation algorithm. It is based

on the energy consumption model described in Section 5.1. It calculates the

active, passive and total energy consumption of the WNIC for a given strategy

and for a given time duration. The algorithm calculates the energy consumption

independently of the environment. The main reason is that the time that the

WNIC of a node (executing the neighbor detection algorithm) spends in each

radio mode is independent of the environment attenuation.

Moreover, in order for the algorithm to characterize accurately the energy

consumption of a current smartphone’s WNIC, we use the power consumption

specifications of Broadcom’s BCM 4328 WNIC which is also used as a reference

in [39] to devise power consumption equations.

The algorithm has three input parameters: the transmission power powtx,

the time duration ∆period (these two parameters form Strategy (powtx, ∆period)),

and the time duration Ttotal for which the energy consumption is calculated. The

algorithm has three output parameters: the energy consumption in the active

mode Eactive, the energy consumption in the passive mode Epassive and the

total energy consumption Etotal.

The algorithm has two main steps:

1. For m ∈ {active, passive}, perform the following:

(a) Calculate powm, where powm is the power consumption of m mode.

(b) Calculate Tm, where Tm is the amount of time out of Ttotal that is

spent in m mode.

(c) Set Em= powm×Tm, where Em is the amount of energy consumed

in m mode.

2. Set Etotal=
∑

m∈{active,passive} Em, where Etotal is the total energy con-

sumed during Ttotal and return Eactive, Epassive and Etotal as output.
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In the following, we describe two Substeps 1a and 1b.

1a) Calculate powm : depending on the value of m, there exist two cases:

• If m is equal to active, powactive should be calculated. To do so, we use

Equation 1 where all quantities are in milliwatts (mWs). This equation

was introduced in [39]. As discussed in Section 5.1, powactive is the power

consumed by WNIC while transmitting packets. Equation 1 shows how

powactive can be defined in terms of transmission power powtx.

powactive = 305 +
powtx

0.02× 5
[
2

3
×log10(powtx)]

(1)

The first term of the equation, i.e., 305 mW, represents the common power

consumed by the circuitry independent of powtx. This value is obtained

based on Broadcom’s BCM 4328 WNIC specifications [13]. The second

term of the equation represents the total power consumed by the RF power

amplifier of the WNIC, which is active during transmissions.

• If m is equal to passive, powpassive should be calculated. In [39], power

consumed by WNIC during the reception is assumed to be always equal

to 295 mW based on Broadcom’s BCM 4328 WINC specifications. This

assumption seems to be correct since the experimental results in [18] show

that the amount of power consumed by the WNIC during the reception is

not influenced by the transmission power powtx. Thus, we also adopt this

assumption in our algorithm and set the value of powpassive to 295 mW.

1b) Calculate Tm : depending on the value of m, there exist two cases:

• If m is equal to active, Tactive should be calculated.

Intuitively, Tactive is the sum of transmission times of all packets that

are transmitted by WNIC during Ttotal. Thus, let Ttx be the transmission

time of a packet and n be the number of packets transmitted during Ttotal,

Tactive can be defined as:

Tactive = n× Ttx =

⌊
Ttotal

∆period

⌋
× 0.000728 (2)
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where all quantities are in seconds. Note that in Equation 2, n and Ttx

are respectively replaced by

⌊
Ttotal

∆period

⌋
and 0.000728. Below we explain

how these values are obtained.

We find the value of Ttx using Equation 3. This Equation was introduced

in [38]. It calculates the transmission time of an 802.11a data frame

in seconds given its payload size L in bytes and the Bytes-per-Symbol

information ( BpS) which is itself a function of data rate R.

Ttx = 0.00002 +

⌈
30.75 + L
BpS(R)

⌉
× 0.000004 (3)

In our case, i.e., with data rate of 6 Mbps, BpS = 3. Since L = 500 bytes,

we find Ttx = 0.000728 seconds.

To find the value of n, we should find the number of messages transmitted

during Ttotal. According to the neighbor detection algorithm, a message

is sent by the application layer every ∆period. So, by setting the value

of n to

⌊
Ttotal

∆period

⌋
, we make three assumptions. First, we assume that

one application layer message results in one MAC frame. This assump-

tion conforms to our simulation study in Section 4.7 Second, we assume

that no message is dropped by the interface queue. This assumption con-

forms to our system model. Third, we assume that the amount of time

spent by a message between its sending by the application layer until the

end of its transmission from the physical layer is smaller than ∆period.

This assumption is also reasonable considering the values of ∆period of the

studied strategies and is also confirmed by our simulation study described

in Section 4. Based on these assumptions, we know that a message sent

by the application layer is always transmitted to the channel before the

sending of the next message by the application layer. Hence, all messages

sent by the application layer during Ttotal are transmitted during Ttotal +

ε, with ε being negligible (ε accounts for limit conditions where the last

message is sent very close to the end of the measurement period).

7In real life applications, this assumption is not always true. However, to prevent a high

number of packet collisions and network congestion, the hello packets are usually small packets

resulting in few MAC frames. In addition, Tactive is a linear function of number of transmitted

frames. Therefore, this assumption does not influence our observations in Section 5.3.
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• If m is equal to passive, Tpassive should be calculated. Tpassive is the

part of Ttotal that the WNIC spends in the reception or the idle modes,

i.e., it is the part of Ttotal that WSN does not spend in the active mode.

Therefore, Tpassive is calculated using Equation 4 where Tactive is replaced

by Equation 2. Note that all quantities in Equation 4 are in seconds.

Tpassive = Ttotal − Tactive
= Ttotal − (n× Ttx)

= Ttotal − (

⌊
Ttotal

∆period

⌋
× 0.000728)

(4)

5.3. Results

Using the energy consumption evaluation algorithm, we calculated Eactive,

Epassive and Etotal for each strategy during Ttotal = ∆neighborhood = 4 seconds.

Based on these calculations, we reached some observations described below.

Note that these observations are valid for any value of Ttotal since the output

energies of the energy consumption algorithm are linear functions of Ttotal.

• Regardless of strategy, the majority of Etotal consists of Epassive. The re-

sults of different strategies show that, on average, 98.9% of Etotal consists of

Epassive and only 1.08% consists of Eactive. Roughly speaking, the reason is

that regardless of the used strategy, the WNIC spends much more time in

the passive mode than in the active mode. In fact, among all tested strate-

gies, Strategy (25 dBm, 1/12 Sec) is the one that has the maximum value for

Eactive and at the same time the minimum value for Epassive.
8 When we com-

pare Tactive and powactive of this strategy with its corresponding Tpassive and

powpassive, we realize that its powactive is 4.69 times greater than powpassive

(recall that powpassive is always equal to 295 mW). However, its correspond-

ing Tactive is still about 113.46 times smaller than its Tpassive. That is why

its resulting Eactive is still much smaller than its Epassive.

8A strategy can maximize Eactive if it can maximize at the same time Tactive and

powactive. Roughly speaking, it is the strategy that results in the maximum number of

transmitted packets and the maximum transmission power. On the other hand, a strategy

can maximize Epassive if it can just maximize Tpassive, since powpassive is constant and not

a function of transmission power. In other words, all strategies that result in the minimum

number of transmitted packets, maximize Epassive. A similar reasoning can be applied to

find the strategies that minimize Eactive and Epassive.
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• Eactive has a high variation between different strategies while Epassive remains

more or less constant. Our results reveal that by changing strategy, Eactive

varies a lot whereas Epassive tends to remain more or less the same. In fact, let

Emax
active and Emin

active denote respectively the maximum and minimum of Eactive

for the tested strategies, and Emax
passive and Emin

passive denote respectively the

maximum and minimum of Epassive for the tested strategies. Then, Emax
active

is 26.7821 times greater than Emin
active, whereas Emax

passive is more or less equal

to Emin
passive since Emax

passive/E
min
passive = 1.0080 (see Fig. 7 on page 26).

• Variation of Etotal between different strategies is mainly due to variation

of Eactive. This observation is the direct consequence of the observation

described in the previous point. Intuitively, since Eactive varies a lot be-

tween strategies while Epassive remains more or less constant, the variation

of Etotal is mainly due to Eactive. For instance, among the tested strategies,

Strategy (25 dBm, 1/12 sec) is the one that maximizes Etotal and Strategy

(15 dBm, 1 sec) is the one that minimizes Etotal. Thus, if we change the

strategy from (25 dBm, 1/12 Sec) to (15 dBm, 1 Sec) we save 3.05% in Etotal.

This is the result of saving 3.82% in Eactive and at the same time losing 0.77%

in Epassive.

Based on these observations, we directly consider the active energy consump-

tion instead of the total energy consumption while measuring the efficiency of

each strategy. As shown in Fig. 7, under Ttotal = ∆neighborhood = 4 seconds, the

amount of energy saved by applying the strategy with minimum Eactive instead

of other strategies is very low ( i.e., at most 47 milliJoules (mJ) ). However,

since Eactive is a linear function of time, this amount becomes more and more

significant as Ttotal increases (see Fig. 8 on page 26). In other words, choosing a

strategy that minimizes the active energy consumption will not result in saving

much energy in the short-term but in the long-term. Note that, henceforth,

we use the term energy consumption instead of active energy consumption for

simplicity’s sake.
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Figure 7: Variation of Eactive and Epassive over different strategies when Ttotal = ∆neighborhood = 4 seconds
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Figure 8: Variation of Eactive and Epassive over different strategies for high values of Ttotal (different hours)
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Figure 9: Impact of increasing powtx and decreasing ∆period on the energy consumption
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5.3.1. Impact of Changing powtx and ∆period on Energy Consumption

In this section, we discuss the impact of increasing powtx and decreasing

∆period on energy consumption.

• Increasing powtx for a given ∆period. According to the energy consumption

calculation algorithm, for a given ∆period, when we increase powtx, we in fact,

increase the power consumption in the active mode or powactive which in its

turn increases the energy consumption. Thus, powactive is about 621.22 mW,

822.13 mW and 1386.48 mW when transmitting with powtx of 15 dBm, 19

dBm and 25 dBm, respectively. This means that at a given ∆period, energy

consumption is slightly increased (by 1.3 times) when we increase powtx from

15 dBm to 19 dBm and is almost doubled when we increase powtx from 15

dBm or 19 dBm to 25 dBm (see Fig. 9-A on page 26).

• Decreasing ∆period for a given powtx. According to the energy consumption

calculation algorithm, Eactive is a linear function of 1/∆period. Thus, for a

given powtx, decreasing ∆period increases the energy consumption in a linear

manner. This increase is at least twice. Recall that by increasing powtx, the

energy consumption is at most doubled. Thereby, the impact of decreasing

∆period on energy consumption is usually more significant than the impact of

increasing powtx (see Fig. 9-B on page 26).

5.3.2. The Most Efficient Strategy

Fig. 10 on page 28, depicts the strategies ranked in ascending order with re-

spect to their corresponding energy consumption. As discussed in Section 5.3.1,

compared to increasing powtx, decreasing ∆period (which accordingly increases

the number of transmitted packets) has generally a more significant impact on

the increase of energy consumption. That is why for instance, Strategy (15

dBm, 1/2 Sec) consumes more energy than Strategy (19 dBm, 1 Sec) in spite

of the fact that Strategy (15 dBm, 1/2 Sec) uses a lower transmission power

compared to Strategy (19 dBm, 1 Sec).

As depicted in Fig. 10, among all tested strategies, Strategy (15 dBm, 1 Sec)

and Strategy (25 dBm, 1/12 Sec) consume the minimum and maximum amount

of energy, respectively. Therefore, the most efficient strategy is Strategy (15

dBm, 1 Sec). Note that the most efficient strategy is the same in all environ-

ments since energy consumption is calculated independently of environment.

Based on the energy consumption comparisons, for a given strategy s, we

defined the two following metrics:
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Table 3: Efficiency rank and ratio of the strategies
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Rank 1 3 6 10 2 5 8 11 4 7 9 12

Ratio 1 0.5 0.25 0.08 0.75 0.37 0.18 0.06 0.44 0.22 0.11 0.03

• Efficiency rank. This rank is out of 12 strategies in set S and is based on the

ranking in Fig. 10 i.e., in ascending order with respect to energy consumption.

Efficiency rank of the most efficient strategy is equal to 1.

• Efficiency ratio. This is the ratio of energy consumption of the most efficient

strategy to the energy consumption of s. Informally speaking, it compares the

efficiency of s to the maximum efficiency that can be achieved. The efficiency

ratio of the most efficient strategy is 1.

Table 3, depicts the efficiency ranks and ratios of the strategies. We use these

metrics later in Section 6 when discussing the tradeoff between effectiveness and

efficiency.

6. Effectiveness-Efficiency Tradeoff

In this section, we first compare the results of effectiveness and efficiency

evaluations to find the strategy that maximizes both effectiveness and efficiency
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for each environment. We show that there is a conflict between effectiveness and

efficiency. Hence, such a strategy does not exist in any environment. We then

propose an approach to make a tradeoff between effectiveness and efficiency and

we find the tradeoff strategy for each environment. Finally, to show how good

the tradeoff strategy is, for each environment, we compare its effectiveness and

its efficiency to the maximum effectiveness and efficiency that can be achieved

in that environment.

6.1. Conflict

A summary of the results of the effectiveness and efficiency evaluations can

be found in Tables 4 and 5 on page 34.9 As depicted in Table 4, the most effective

strategy and the most efficient strategy are not the same in any environment.

In fact, there is a conflict when we try to maximize both effectiveness and

efficiency. The reason is that, most of the time, a change in powtx or ∆period

does not influence effectiveness and efficiency similarly and in some cases it re-

sults in opposite behaviors (see Table 5). For instance, consider powtx. Based

on the evaluations, we know that regardless of environment, increasing powtx

increases effectiveness, whereas it decreases efficiency. That is why the most ef-

fective strategy has the highest powtx (i.e., 25 dBm) in all environments whereas

the most efficient strategy has the lowest powtx (i.e., 15 dBm). Also, regard-

ing ∆period, we know that decreasing ∆period (down to some degree) increases

effectiveness in indoor environments and decreases effectiveness as the environ-

ment becomes less obstructed. At the same time, decreasing ∆period decreases

efficiency. Thereby, ∆period of the most effective strategy increases from 1/4

second to 1/2 second and then to 1 second as we change the environment from

indoor with hard partitions to indoor with soft partitions and then to outdoor

urban areas, respectively. On the other hand, the most efficient strategy has the

highest ∆period (i.e., 1 second).

Note however that the conflict becomes less severe as the environment be-

comes less obstructed. For instance, as we change the environment from the

indoor with hard partitions to indoor with soft partitions and then to outdoor

urban areas, the efficiency ratio of the most effective strategy increases from 0.11

to 0.22 and then to 0.44, respectively. As a result, its efficiency rank increases

from 9th to 7th and then to 4th (see Table 4). In fact, as already discussed,

the impact that a change in ∆period has on effectiveness and efficiency becomes

9Tables 4 and 5 summarize the results of different sections of this paper. In this section,

we do not discuss the results in rows or columns corresponding to tradeoff strategy or BCR.
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similar as we move from indoor environments to outdoor. Therefore, ∆period of

the most effective strategy becomes higher (and closer to ∆period of the most

efficient strategy) in less obstructed environments.

Similarly, the most efficient strategy becomes more effective as the environ-

ment becomes less obstructed. More precisely, as depicted in Table 4, as we

change the environment from the indoor with hard partitions to indoor with soft

partitions and then to outdoor urban areas, the effectiveness ratio of the most

efficient strategy increases from 0.16 to 0.54 and then to 0.88, respectively. As

a result, its effectiveness rank increases from 12th position to 6th position (see

Table 4). In fact, compared to other strategies, the most efficient strategy has

the lowest powtx (i.e., 15 dBm) and the highest ∆period (i.e., 1 second). As al-

ready discussed, the positive impact of a high ∆period on effectiveness becomes

more significant as the environment becomes less obstructed. At the same time,

based on the results in Section 4.3.3, we know that the negative impact that

a low powtx has on effectiveness becomes less considerable as the environment

becomes less obstructed.

6.2. Approach to Make the Tradeoff

Up to this point, our goal was to find, for each environment, the strategy

that has both maximum effectiveness and efficiency among all other strategies.

In order to achieve our goal, we evaluated the effectiveness and the efficiency of

each strategy separately. However, due to the conflict described in Section 6.1,

such strategy does not exist. Moreover, in a given environment, the strategy

that has the highest effectiveness usually has a low efficiency and the strategy

that has the highest efficiency is not always very effective. Therefore, we need to

find a tradeoff strategy, that is a strategy that on one hand does not consume

a lot of energy and on the other hand results in a high (but maybe not the

highest) detection probability compared to other strategies.

The main idea for making the tradeoff comes from the concept of cost–benefit

analysis in the field of economy [9]. Thus, we identify the resulting detection

probability of a strategy as its benefit and its resulting energy consumption as

its cost. Then, for each strategy, the benefit–cost ratio (BCR) is calculated.

Finally, the strategy that results in the highest ratio is chosen as the tradeoff

strategy. This means that the tradeoff strategy is the one that makes the best

use of energy for neighbor detection.

6.3. Benefit–Cost Ratio (BCR)

Let e be the environment in which we apply a strategy s. Also, let Prdetect(s, e)

denote the neighbor detection probability obtained by applying s in e and E(s)
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denote the energy consumption due to applying s. Then, BCR achieved by

applying s in e or BCR (s, e) is defined as:

BCR (s, e) =
Prdetect(s, e)

E(s)
(5)

6.4. Impact of changing powtx and ∆period on BCR

We use Fig. 11 and Fig. 12 on page 32 to discuss the impact of changing

powtx and ∆period on BCR . Intuitively, changing the value of powtx or ∆period

can only improve BCR if the resulting gain in the detection probability is more

significant than the loss of energy. More precisely, suppose that a change in the

value of one of these parameters, changes the detection probability by a factor

of x and the energy consumption by a factor of y. Then, BCR is increased if

x/y > 1. If x/y = 1, BCR does not change. Finally, if x/y < 1, BCR decreases.

In the following, we use this observation to interpret the results.

• Increasing powtx for a given ∆period. We know that for a fixed value of

∆period, increasing powtx increases the detection probability in all environ-

ments. It also increases the energy consumption. However as shown in Fig. 11,

it can have different impacts on the value of BCR depending on the environ-

ment. For instance, under ∆period = 1 second, increasing powtx from 15 dBm

to 25 dBm increases BCR in the indoor with hard partitions environment and

decreases BCR in the outdoor-urban environment. In fact, in both cases the

energy consumption is increased by a factor of 2.23 (recall that the energy

consumption is independent of environment). However, in the indoor with

hard partitions environment the detection probability is increased by a factor

of 5.66, whereas, in the outdoor urban environment, it is only increased by a

factor of 1.13.

To summarize the results we can say that increasing powtx improves BCR only

in indoor environments, under high values of ∆period and for certain ranges

of powtx (see Fig. 11). In fact, as already discussed in Section 4.3.3, although

in all environments increasing powtx improves the detection probability, in

general, the improvement becomes less significant as the environment be-

comes less obstructed. Accordingly, increasing powtx can lead to a decrease

in BCR in less obstructed environments.

• Decreasing ∆period for a given powtx. For a fixed value of powtx, decreasing

∆period decreases the value of BCR regardless of the environment (see Fig. 12).

In fact, we know that decreasing ∆period increases the energy consumption
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Figure 11: Impact of increasing powtx on BCR in different environments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 1/2 1/4 1/12

B
C

R
 (

1
/m

J)

∆period (sec)

(A) Indoor with Hard Partitions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 1/2 1/4 1/12

B
C

R
 (

1
/m

J)

∆period (sec)

(B) Indoor with Soft Partitions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 1/2 1/4 1/12

B
C

R
 (

1
/m

J)

∆period (sec)

(C) Outdoor Urban

 0

 0.2

 0.4

 0.6

 0.8

 1

1 1/2 1/4 1/12

∆period (sec)

powtx = 15 dBm
powtx = 19 dBm
powtx = 25 dBm

 0

 0.2

 0.4

 0.6

 0.8

 1

1 1/2 1/4 1/12

∆period (sec)

powtx = 15 dBm
powtx = 19 dBm
powtx = 25 dBm

 0

 0.2

 0.4

 0.6

 0.8

 1

1 1/2 1/4 1/12

∆period (sec)

powtx = 15 dBm
powtx = 19 dBm
powtx = 25 dBm

Figure 12: Impact of decreasing ∆period on BCR in different environments
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Figure 13: Strategies ranked in the descending order with respect to their corresponding BCR in different environments
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considerably. We also know that decreasing ∆period can have different impacts

on the detection probability depending on the environment. In particular, in

indoor environments, decreasing ∆period down to some value ( such as 1/4

second in indoor with hard partitions environment ) can improve the detection

probability. However, in all these cases the loss in energy consumption is so

significant that it mitigates the potential gain in detection probability.

6.5. The Tradeoff Strategy

Fig. 13 on page 32, shows the strategies ranked in descending order with

respect to their corresponding BCR in different environments. As already dis-

cussed in Section 6.4, decreasing ∆period decreases BCR in all cases. That is

why the tradeoff strategy has ∆period = 1 second in all environments. Moreover,

increasing powtx improves BCR only when the environment is obstructed and

as the environment becomes less obstructed it can even decrease BCR. That is

why the tradeoff strategy in indoor with hard partitions, indoor with soft par-

titions and outdoor urban environments has respectively powtx of 25 dBm, 19

dBm and 15 dBm.

6.6. How Effective and Efficient is the Tradeoff Strategy?

A summary of the results of BCR evaluation can be found in Tables 4 and 5

on page 34. As shown in Table 4, in all environments, the effectiveness ratio

of the tradeoff strategy is high and close to 1. More precisely, the effectiveness

ratio of the tradeoff strategy is equal to 0.90, 0.76 and 0.88 in indoor with hard

partitions, indoor with soft partitions and outdoor urban areas, respectively.

Accordingly, the tradeoff strategy has a relatively good effectiveness rank i.e.,

3rd, 6th and 6th in indoor with hard partitions, indoor with soft partitions and

outdoor urban areas, respectively.

Moreover, the efficiency ratio of the tradeoff strategy is equal to 0.44, 0.75

and 1 in indoor with hard partitions, indoor with soft partitions and outdoor

urban areas, respectively (see Table 4). In fact, ∆period of the tradeoff strat-

egy is equal to 1 second in all environments and we know that a high value

of ∆period results in low energy consumption. At the same time, powtx of the

tradeoff strategy decreases as the environment becomes less obstructed which

causes the decrease of its energy consumption in less obstructed environment

and increase of its efficiency ratio. Thereby, the tradeoff strategy has a rela-

tively good efficiency rank i.e., 4th, 2nd and 1st in indoor with hard partitions,

indoor with soft partitions and outdoor urban areas, respectively. Note that in

the outdoor urban environment, the tradeoff strategy is the same as the most
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Table 4: Comparison of the most effective strategy, the most efficient strategy and the tradeoff strategy in different environments

Environment Strategy
Detection

Probability

Energy

Consumption

(mJ)

BCR

(1/mJ)

Effectiveness

Ratio

Efficiency

Ratio

Effectiveness

Rank

Efficiency

Rank

Indoor-hard
The Most Effective Strategy

(25 dBm, 1/4 Sec) 0.5722 16.15 0.035 1 0.11 1 9

The Most Efficient Strategy

(15 dBm, 1 Sec) 0.0910 1.809 0.050 0.16 1 12 1

The Tradeoff Strategy

(25 dBm, 1 Sec) 0.5157 4.037 0.127 0.90 0.44 3 4

Indoor-soft
The Most Effective Strategy

(25 dBm, 1/2 Sec) 0.8536 8.07 0.105 1 0.22 1 7

The Most Efficient Strategy

(15 dBm, 1 Sec) 0.4612 1.809 0.254 0.54 1 12 1

The Tradeoff Strategy

(19 dBm, 1 Sec) 0.6539 2.39 0.273 0.76 0.75 6 2

Outdoor-urban
The Most Effective Strategy

(25 dBm, 1 Sec) 0.9679 4.04 0.239 1 0.44 1 4

The Most Efficient Strategy

(15 dBm, 1 Sec) 0.8532 1.809 0.471 0.88 1 6 1

The Tradeoff Strategy

(15 dBm, 1 Sec) 0.8532 1.809 0.471 0.88 1 6 1

Table 5: Impact of changing powtx or ∆period on effectiveness, efficiency and BCR in different environments

Environment Increasing powtx Decreasing ∆period

Impact on effectiveness Impact on efficiency Impact on BCR Impact on effectiveness Impact on efficiency Impact on BCR

Indoor-hard Improves Deteriorates
improves only under

∆period = 1 second.

Generally improves if

∆period is decreased

down to 1/4 second.

Deteriorates Deteriorates

Indoor-soft Improves Deteriorates

improves only under

∆period = 1 second

and when powtx is

increased up to 19

dBm.

Generally improves if

∆period is decreased

down to 1/2 second.

Deteriorates Deteriorates

Outdoor-urbant Improves Deteriorates Deteriorates Deteriorates Deteriorates Deteriorates
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efficient strategy, and therefore it has the lowest energy consumption compared

to other strategies.

7. Related Work

The existing studies on transmit power control in ad hoc networks [27],

for the most part, consider the unicast communications and therefore are not

relevant to our work. Also, most of the papers which study the problem of

reliable broadcast in MANETs, consider one-shot broadcast and not periodic

broadcast [21]. For these reasons, in this section we only discuss the works

performed in the two fields which we believe are the closests to our work, i.e.,

enhancements of the hello protocol ; and beacon broadcast for VANET safety

applications.

7.1. Enhancements of the hello Protocol

Neighbor detection in ad hoc networks is usually studied as a building block

for applications such as routing, leader election, group management and local-

ization. The neighbor detection algorithm introduced in this paper is inspired

by the basic hello protocol first described in Open Shortest Path First (OSPF )

routing protocol [35]. It works as follows. Nodes periodically send hello mes-

sages to announce their presence to close nodes, and maintain a neighborhood

table. The sending frequency is denoted by fhello. Thus, in the case of our

neighbor detection algorithm fhello = 1/∆period.

In the literature, there exist several works that attempt to improve the ba-

sic hello protocol performance especially with regards to energy consumption.

These works can be classified into two categories described below.

The first category consists of the algorithms that aim at minimizing the en-

ergy consumption by keeping the nodes in the sleep radio mode most of the time

and thus, reaching neighbor detection with as few transmission and/or reception

attempts as possible [34, 42, 51, 17, 48, 26, 6]. The majority of the enhance-

ments of the hello protocol belongs to this category. However, as described in

Section 5.1, we do not consider the sleep radio mode in this paper. Therefore,

we do not discuss the works in this category here.

The second category (which is more relevant to our work) consists of the

algorithms that aim at minimizing the energy consumption of neighbor detection

by (regularly) adapting fhello and/or the transmission power to the network

changes [22, 24, 23]. For instance, in the protocol proposed in [22], the value of

fhello is adapted based on link connectivity. More precisely, the authors define
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two metrics: Time to Link Failure (TLF) and Time Without link Changes

(TWC). Thus, each node regularly evaluates these metrics and compares them

with some given thresholds. Then, based on the comparisons, the node can

switch fhello from a high value (fhigh) to a low value (flow) and vice-versa. The

drawback of this approach is that the thresholds may need to evolve over time

and finding the correct thresholds is not obvious.

The protocols in [24, 23] adapt fhello to the variations of node speed. They

are based on the existence of an optimal hello frequency denoted by fopt. The

equation for fopt was first introduced in [47] where it is calculated based on the

relative speed of nodes. In [24], the authors proposed a Turnover based Adap-

tive hello Protocol (TAP). According to TAP, each node evaluates the changes

of its neighborhood table periodically (i.e., before sending each hello) and calcu-

lates the turnover. The turnover (also dented by r) is, in fact, the ratio between

the number of new neighbors (i.e., nodes detected during the last period) and

the current total number of neighbors. Once the turnover r is calculated, it is

compared to ropt where ropt is the turnover corresponding to fopt. If r < ropt,

this means that fhello is too high and there are not enough changes in the table.

Therefore, fhello should be decreased. On the contrary, if r > ropt, this means

that fhello is too low and that there are too many changes. Therefore, fhello

should be increased. In this way, TAP keeps the value of fhello always close to

fopt. In [23] a Turnover based Frequency and transmission Power Adaptation

algorithm (TFPA) is presented. TFPA applies a similar (but slightly improved)

approach as TAP to dynamically adapt fhello. Moreover, TFPA calculates an

optimal value for transmission range based on the energy consumption model

presented in [20]. Then, it dynamically adapts the transmission power so that

the resulting transmission range remains close to the optimal value. Compared

to TAP, TFPA has a lower energy consumption since it dynamically adapts both

fhello and the transmission power. However, both protocols have assumptions

which are less realistic compared to the assumptions in our work. More pre-

cisely, they consider the unit disk graph and a deterministic radio propagation

model whereas we use a probabilistic radio propagation model. Moreover, the

energy consumption model assumed by TFPA, corresponds to sensor nodes and

does not realistically reflect the energy consumption of WNICs used in today’s

mobile devices whereas we model the energy consumption based on specifica-

tions of current smartphones. Finally, both protocols use fopt which is basically

determined by the relative speed of nodes. As a result, they essentially adapt

fhello according to the speed changes and neglect the other factors such as the

environment attenuation or congestions. In our work, on the other hand, we take
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into account the environment attenuations as well as interferences and collisions

and neglect the relative speed of the nodes. In fact this choice is justified by the

fact that in our case the devices are usually used by pedestrians. Hence, they

have a slow movement especially during the neighborhood time of 4 seconds.

7.2. Beacon Broadcast for VANET Safety Applications

In vehicular ad hoc networks (VANETs), safety applications aim at minimiz-

ing accident levels. One type of safety messages are beacons. A beacon usually

contains the vehicle’s position, speed, direction, etc and is periodically broadcast

in a single-hop manner. By using beacons, safety applications gain knowledge

of the surroundings and can prevent dangerous situations for the drivers. The

safety applications usually require the beacon delivery up to a certain distance

and have some guarantees for message reliability and latency. Thus, many pa-

pers study the impact of parameters such as transmission power, packet genera-

tion rate or packet size on fulfillment of applications’ guarantees [54, 45, 46, 32].

For instance, in [45] authors present a simulation-based study in ns-2.28 to

analyze the impact of transmission power and packet generation rate on the re-

ception of beacon messages. Authors consider 1800 nodes uniformly distributed

in a circular map. All nodes broadcast messages with common transmission

power and packet generation rate. The broadcast reception is only studied for

messages of senders located at 40 m from a receiver which is located at the

center of the map. Regarding the impact of transmission power on broadcast

reception, authors state that the transmission power should be strong enough to

resist the interferences but not so strong as to increase the load on the medium.

Regarding the impact of packet generation rate on broadcast reception, they

state that increasing packet generation rate can increase the number of received

packets significantly, as long as the channel busy time (or the time ratio a node

determines the channel as busy) has not reached its maximum. There are sev-

eral differences between this study and ours: firstly, this study is performed for

VANETs. Thus, the 802.11 physical layer parameters are set to the specific

values of the 802.11p standard whereas we use the values of the 802.11a stan-

dard. Secondly, this study uses the Nakagami radio propagation model known

to model signal attenuation in VANETs, whereas we use LNS to model ob-

structed urban areas. Thirdly, this study uses different metrics (such as channel

busy time) than our metrics to interpret the results. Finally, this study does

not consider the impact of transmission power or packet generation rate on the

energy consumption.

In [46], authors show that periodic beacon transmission can result in the
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channel saturation which in turn, causes a high number of packet collisions

and low reception rates. They also show that simply increasing the packet

generation rate or the transmission power can exacerbate the channel conditions.

Therefore, they propose an algorithm called Distributed Fair Power Adjustment

for Vehicular environments (D-FPAV). The algorithm limits the beaconing load

on the channel below a predefined threshold while ensuring a high probability of

beacon delivery at close distances from the sender. Similarly to the work in [45],

this work also considers the 802.11p physical and MAC layers and the Nakagami

radio propagation model and thus has a different system model compared to our

work. However, the basic idea behind the D-FPAV algorithm is to fix the packet

generation rate at the minimum required by safety applications, and to adjust

the transmission power of beacons in case of congestion. This means that the

way that the D-FPAV algorithm adapts the transmission power and the packet

generation rate somehow resembles the way that our tradeoff strategy is adapted

in different environments. In fact, for the tradeoff strategy we keep ∆period at

its highest value and we decrease the transmission power in less obstructed

environments i.e., where the collisions and interferences are high.

8. Conclusion

To the best of our knowledge, this is the first paper that studies the impact

of transmission power and broadcast interval on effectiveness and efficiency of

neighbor detection for MANETs in different urban environments. Our results

can be used as a basis to design adaptive neighbor detection algorithms for

urban environments. Such algorithms can adapt the transmission power and

broadcast interval based on environment and application guarantees on effec-

tiveness and efficiency. To deploy such algorithms on a smartphone, one can use

lightweight sensing services such as the one introduced in [56] which can detect

the indoor/outdoor environment in a fast, accurate, and efficient manner.

Relying on a realistic simulation-based study, we showed that the most effec-

tive strategy is not the same as the most efficient strategy in any environment.

In fact, in all environments, there is a conflict between effectiveness and effi-

ciency such that the most effective strategy is usually not very efficient and the

most efficient strategy is not always very effective. However, we showed that

the conflict becomes less severe as the environment becomes less obstructed.

When discussing our results, we also described how a change in transmission

power and broadcast interval can influence the effectiveness and efficiency. We

then proposed an approach to make a tradeoff between effectiveness and effi-

ciency. Accordingly, we identified the tradeoff strategy in each environment and
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we showed that it has a relatively good effectiveness and efficiency compared to

other strategies.

The conclusions drawn in this paper could still be more realistic if our eval-

uations could be performed on a real prototype. In fact, we are currently devel-

oping, ManetLab, a modular and configurable software framework for creating

and running testbeds to evaluate MANET-specific protocols [50]. Thus, as a po-

tential future work, we consider to deploy the neighbor detection algorithm on

ManetLab and compare the results of our evaluations with the ones performed

using the ManetLab.

There are also some issues which remain open and we might consider as

future work. For instance, the possibility to detect nodes using an underlying

multi-hop network should be investigated. Moreover, in this paper we did not

consider the sleep radio mode for 802.11 communication. Since for energy con-

sumption we only took into account the active energy, it seems that our results

could still be valid for the case when the sleep radio mode is enabled. Thus,

this issue can also be investigated as future work.
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[50] François Vessaz, Benôıt Garbinato, Arielle Moro and Adrian Holzer, De-

veloping, deploying and evaluating protocols with ManetLab. In Proc. NE-

TYS’13, pp. 89–104, 2013.

[51] G. Wattenhofer, G. Alonso, E. Kranakis, and P. Widmayer. Randomized

protocols for node discovery in ad hoc, single broadcast channel networks.

In Proc. IPDPS’03, 2003.

[52] Waze. https://www.waze.com/en/

[53] WhosHere. http://whoshere.net/

[54] Q. Xu, T. Mak, J. Ko, and R. Sengupta, Vehicle-to-vehicle safety messaging

in DSRC, In Proc. ACM VANET’04, pp. 19–28, 2004.

[55] R. Zheng, J. C. Hou and L. Sha, Asynchronous wakeup for ad hoc networks,

In Proc. ACM MobiHoc’03, pp. 35–45, 2003.

[56] P. Zhou, Y. Zheng, Z. Li, M. Li, and G. Shen, IODetector: a generic service

for indoor outdoor detection. In Proc. ACM SenSys’12. pp 113–126, 2012.

43

https://www.waze.com/en/
http://whoshere.net/

	Introduction
	Contributions and Roadmap

	System Model
	Processes
	Time
	Communication
	Environment
	Neighbor Detection Algorithm

	Problem Statement
	Evaluation of Effectiveness
	 Approach to Calculate the Neighbor Detection Probability
	Simulation Setup
	Results
	Packet Dropping Metrics
	Metrics-based Interpretation of the Results
	Impact of Changing powtx and period on Neighbor Detection Probability
	The Most Effective Strategy


	Evaluation of Efficiency
	Energy Consumption Model
	Energy Consumption Calculation Algorithm
	Results
	Impact of Changing powtx and period on Energy Consumption
	The Most Efficient Strategy


	Effectiveness-Efficiency Tradeoff
	Conflict
	Approach to Make the Tradeoff
	 Benefit–Cost Ratio (BCR)
	Impact of changing powtx and period on BCR
	The Tradeoff Strategy
	How Effective and Efficient is the Tradeoff Strategy? 

	Related Work
	Enhancements of the hello Protocol
	Beacon Broadcast for VANET Safety Applications

	Conclusion

