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a b s t r a c t 

We introduce an algorithm that implements a time-limited neighbor detector service in mobile ad hoc 

networks. The time-limited neighbor detector enables a mobile device to detect other nearby devices 

in the past, present and up to some bounded time interval in the future. In particular, it can be used 

by a new trend of mobile applications known as proximity-based mobile applications. To implement the 

time-limited neighbor detector, our algorithm uses n = 2 k virtual mobile nodes where k is a non-negative 

integer. A virtual mobile node is an abstraction that is akin to a mobile node that travels in the network 

in a predefined trajectory. In practice, it can be implemented by a set of real nodes based on a repli- 

cated state machine approach. Our algorithm implements the neighbor detector for real nodes located 

in a circular region. We also assume that each real node can accurately predict its own locations up to 

some bounded time interval �predict in the future. The key idea of the algorithm is that the virtual mobile 

nodes regularly collect location predictions of real nodes from different subregions, meet to share what 

they have collected with each other and then distribute the collected location predictions to real nodes. 

Thus, each real node can use the distributed location predictions for neighbor detection. We show that 

our algorithm is correct in periodically well-populated regions. We also define the minimum value of 

�predict for which the algorithm is correct. Compared to the previously proposed solution also based on 

the notion of virtual mobile nodes, our algorithm has two advantages: (1) it tolerates the failure of one 

to all virtual mobile nodes; (2) as n grows, it remains correct with smaller values of �predict . This fea- 

ture makes the real-world deployment of the neighbor detector easier since with the existing prediction 

methods, location predictions usually tend to become less accurate as �predict increases. We also show 

that the cost of our algorithm (in terms of communication) scales linearly with the number of virtual 

mobile nodes. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

The growing adoption and usage of mobile devices and par-

ticularly smartphones has caused the emergence of a new trend

of distributed applications known as Proximity-Based Mobile ( PBM )

applications [3–6] . These applications enable a user to interact

with others in a defined range and for a given time duration e.g.,

for social networking (WhosHere [52] , LoKast [35] , iGroups [25] ,

LocoPing [34] ), gaming (local multiplayer apps [36] ) and driving

(Waze [51] ). 

Discovering who is nearby is one of the basic requirements of

PBM applications. It is the preliminary step for further interactions

between users. It also enables users to extend their social network
∗ Corresponding author. 

E-mail addresses: behnaz.bostanipour@unil.ch (B. Bostanipour), benoit. 

garbinato@unil.ch (B. Garbinato). 
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rom the people that they know to the people that they might not

now but who are in their proximity. For instance, with the so-

ial networking applications such as WhosHere [52] or LoKast [35] ,

 user first discovers others in her proximity and then decides to

iew their profiles, start a chat with them or add them as friends.

he discoverability, however, may not always be limited to the cur-

ent neighbors. For instance, with the social networking applica-

ions such as iGroups [25] or LocoPing [34] , a user can discover

thers who were in her vicinity during a past event (e.g., concert,

radeshow, wedding) or simply during a past time interval (e.g.,

he past 24 h). One can also think of applications that provide the

ser with the list of people who will be in her proximity up to

ome time interval in the future and thus create the potential for

ew types of social interactions [5] . 

In this paper, we present an algorithm that implements the

ime-limited neighbor detector service. This service enables a device

o discover the set of its neighbors in the past, present and up to

http://dx.doi.org/10.1016/j.comnet.2016.11.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.11.004&domain=pdf
mailto:behnaz.bostanipour@unil.ch
mailto:benoit.garbinato@unil.ch
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2 There are two main reasons behind our choice of a MANET as the underlying 

network architecture. Firstly, MANETs seem to be the most natural existing tech- 

nology to enable PBM applications. In fact, similar to PBM applications, in a MANET 
ome bounded time interval in the future in a mobile ad hoc net-

ork (MANET). It was first introduced in our previous work [5] to

apture the requirements of neighbor detection in PBM applica-

ions. 

Our algorithm implements the time-limited neighbor detector

sing n = 2 k virtual mobile nodes where k is a non-negative in-

eger. 1 A virtual mobile node is an abstraction that was already

ntroduced in the literature and used for tasks such as routing or

ollecting data in MANETs [14,15] . It is akin to a mobile node that

ravels in the network in a predefined trajectory known in advance

o all nodes. In practice a virtual mobile node is emulated by a set

f real nodes in the network using a replicated state machine ap-

roach. 

Our algorithm implements the neighbor detector for real nodes

ocated in a circular region. We also assume that each real node

an accurately predict its own locations up to some bounded time

nterval �predict in the future. Thus, the region is divided into n

qual subregions and each subregion is associated with one virtual

obile node. Each virtual mobile node regularly collects the loca-

ion predictions from the real nodes in its subregion and meets

ther virtual mobile nodes to share what it has collected with

hem. After the sharing, each virtual mobile node has the location

redictions collected from the entire region, which it distributes

o the real nodes in its subregion. In this way, each real node can

nd its neighbors at current and future times based on the col-

ected location predictions that it receives from a virtual mobile

ode. It can also store the collected location predictions so it can

e queried about its past neighbors. 

ain contributions. The main contributions of this paper are as

ollows. We introduce an algorithm that implements the time-

imited neighbor detector service using n = 2 k virtual mobile nodes

here k is a non-negative integer. To guarantee the coordination

etween the virtual mobile nodes, we define a set of explicit prop-

rties for their trajectory functions and we show how such trajec-

ory functions can be computed. We prove the correctness of the

lgorithm under certain conditions. In particular, we show that our

lgorithm is correct for a category of executions, called nice exe-

utions , which basically correspond to the executions of the algo-

ithm in periodically well-populated regions such as main squares

n a downtown area. We also define the minimum value of �predict 

or which the algorithm is correct in different cases of nice execu-

ions. 

This work relies on our previous work [5] for the general idea of

sing virtual mobile nodes and location predictions to implement

he time-limited neighbor detector. However, contrary to the algo-

ithm in [5] which uses only a single virtual mobile node and does

ot tolerate its failure, our algorithm can use multiple virtual mo-

ile nodes and can tolerate the failure of one to all virtual mobile

odes. Due to the use of multiple virtual mobile nodes, our algo-

ithm has a feature which did not exist in the previous solution: as

he number of virtual mobile nodes grows, our algorithm remains

orrect with smaller values of �predict . This feature makes the real-

orld deployment of the neighbor detector easier. In fact, although

here exist different approaches to predict the future locations of

 real node, usually predictions tend to become less accurate as

predict increases. We show that the cost of our algorithm (in terms

f communication) scales linearly with the number of virtual mo-

ile nodes. We also propose a set of optimizations which can be

sed for the real-world deployment of our algorithm. 

To the best of our knowledge, this is the first work that uses

ultiple virtual mobile nodes to implement a neighbor detector
1 The present work is an extension of the work published as a short conference 

aper in [7] . 

t

h

i

m

m

ervice in MANETs. Moreover, this is the first work that defines a

et of explicit properties for the trajectory functions of the virtual

obile nodes to guarantee the coordination between them. 

oad map. The remainder of the paper is as follows. In Section 2 ,

e describe our system model and introduce some definitions. In

ection 3 , we present a neighbor detector service for MANETs in

wo variants: the perfect variant, which corresponds to the ideal

ase of neighbor detection and is rather impractical and the time-

imited variant, for which we propose an implementation in this

aper. In Section 4 , we present the implementation of the time-

imited variant of the neighbor detector service based on virtual

obile nodes. In order to do so, we first describe what a virtual

obile node is and how it can be used for the implementation

f the time-limited neighbor detector. We then add n virtual mo-

ile nodes to the system model. Each virtual mobile node has a so

alled scan path through which it travels in its subregion. Thus, we

efine the properties of this path and we show how it can be com-

uted in order to be useful for our algorithm. We then introduce

 round-based algorithm that implements the time-limited neigh-

or detector in the new system model and prove the correctness of

he algorithm under certain conditions. As we show in the proof,

he algorithm can tolerate the failure of one to all virtual mobile

odes for a category of executions, called nice executions , which

asically correspond to the executions of the algorithm in period-

cally well-populated regions. We also define the minimum value

f �predict for which the algorithm is correct in different cases of

ice executions. Then, we show the evolution of this value as n

rows. Based on this evolution, we deduce that as the number of

irtual mobile nodes grows the algorithm requires smaller values

f �predict to correctly implement the time-limited neighbor de-

ector. In Section 5 , we discuss two topics related to the perfor-

ance of the algorithm, namely its scalability with respect to the

umber of virtual mobile nodes and the optimizations which can

mprove its performance. In particular, we show that the commu-

ication cost of the algorithm, defined as the number of message

roadcasts per round, has a complexity of O(n ) . In Section 6 , we

iscuss the related work and in Section 7 , we conclude and discuss

uture work. The paper has also an Appendix A , which is devoted

o finding an upper bound for the scan path length of a virtual

obile node. This upper bound is used (directly or indirectly) in

ections 4.3, 4.6 and 5.1 to find other results. 

. System model and definitions 

We consider a mobile ad-hoc network (MANET) consisting of a

et P of processes that move in a two dimensional plane. A pro-

ess abstracts a mobile device in a PBM application. 2 We use the

erms process , node and real node interchangeably. Each process has

 unique identifier. Processes can move on any continuous path,

owever there exists a known upper bound on their motion speed.

 process is prone to crash-reboot failures: it can fail and recover

t any time, and when the process recovers, it returns to its initial

tate. A process is correct if it never fails. Since we do not con-

ider Byzantine behaviors, the information security and privacy is-

ues are beyond the scope of this paper. 

We assume the existence of a discrete global clock, i.e., the

ange T of the clock’s ticks is the set of non-negative integers. We
wo nodes can communicate if they are within a certain distance of each other (to 

ave radio connectivity) for a certain amount of time. Secondly, mobile devices are 

ncreasingly equipped with ad hoc communications capabilities (e.g., WiFi in ad hoc 

ode or Bluetooth) which increases the chance of MANETs to be one of the future 

ainstream technologies for PBM applications [6] . 
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also assume the existence of a known bound on the relative pro-

cessing speed. Each process in the system has access to a LocalCast

service , a global positioning service and a mobility predictor service.

In the following, we first introduce some definitions that are used

throughout the paper. We then present each of the above men-

tioned services and for each service, we describe how it can be

implemented in the real world. 

2.1. Definitions 

Let p i be a process in the network, we introduce the following

definitions in order to capture proximity-based semantics. 

• A location denotes a geometric point in the two dimensional

plane and can be expressed as tuple ( x , y ). 

• loc ( p i , t ) denotes the location occupied by process p i at time t

∈ T . 

• Z ( p i , r , t ) denotes all the locations inside or on the circle cen-

tered at loc ( p i , t ) with given radius r . 

• r d is called the neighbor detection radius . It is a constant known

by all processes in the network. Thus, Z ( p i , r d , t ) presents the

neighborhood region of p i at time t . 

2.2. LocalCast service 

This communication service was introduced in [14,15] . It allows

a process to send messages to all processes located within a given

radius around it. Formally, the LocalCast service exposes the fol-

lowing primitives: 

• broadcast ( m , r ): broadcasts a message m in Z ( p i , r , t b ), where p i
is the sender and t b is the time when the broadcast is invoked.

• receive ( m , p i ): callback delivering a message m broadcast by

process p i . 

The service satisfies the following properties. 

Reliable delivery. Assume that a process p i performs a

broadcast (m, r) action. Let d be a constant and �deli v ery =
[ t b ; t b + d] . Then every process p j delivers m in �deli v ery if

∀ t ∈ �deli v ery , loc (p j , t) ∈ Z(p i , r, t) and p j does not fail dur-

ing �deli v ery . 

Integrity. For any LocalCast message m and process p i , if

receive (m, p j ) event occurs at p i , then a broadcast (m, r)

event precedes it at some process p j . 

As stated in [14] , sending a message using this service should

be thought of as making a single wireless broadcast (with a small

number of retries, if necessary, to avoid collisions). In practice,

this service can be implemented with high probability by one of

the existing single-hop wireless broadcast protocols as long as the

broadcast radius is not too large [14,15] . 

2.3. Global positioning service 

This service allows each mobile process p i to know its current

location and the current time via the following functions: 

• getCurrentTime : returns the current global time. Formally, this

implies that each process p i has access to the global clock mod-

eled at the beginning of Section 2 . 

• getCurrentLocation : returns the location occupied by p i at the

current global time. 

In this paper, we do not provide any formal properties for this

service. However, we assume that the outputs of its functions are

accurate. In an outdoor setting, this service can typically be imple-

mented using NASA’s GPS space-based satellite navigation technol-

ogy. In an indoor environment, a MIT’s Cricket device [39] may be

more suitable to implement this service. 
.4. Mobility predictor service 

This service allows each mobile process p i to predict its future

ocations up to some bounded time �predict via the following func-

ion: 

• predictLocations : returns a hash map containing the predicted

locations for p i at each time t in the interval [ t c ; t c + �predict ]

where t c is the time when predictLocations is invoked. 

The service satisfies the following property. 

Strong accuracy. Let t ∈ [ t c ; t c + �predict ] and l be a location, if

p i is predicted to be at l at time t , then loc (p i , t) = l. 

In this paper we assume that in a PBM application a mobile de-

ice (abstracted by a process) is used only by one user. Therefore,

o implement the mobility predictor service, a human mobility

rediction method should be considered. The human mobility pre-

iction methods are usually based on the fact that the human ac-

ivities are characterized by a certain degree of regularity and pre-

ictability [40] , thus, a person’s future movement can be predicted

sing her prior movement history (e.g., previous locations, resi-

ence time at each previous location, etc... ). In the literature, there

xist various human mobility prediction methods [10,13,40,44,45] ,

hich are not all suitable for implementing the mobility predictor

ervice. In fact, from a practical point of view, a prediction method

hould have the following characteristics to implement our mo-

ility predictor service: (1) it should be able to predict not only

he future locations of a user but also the time interval during

hich the user stays at each predicted location; (2) it should not

equire complex computations and large amount of memory space.

he reason behind this requirement is that we consider a MANET

here fixed infrastructures are lacking. Thereby, the predictions

hould be made by each device itself, which has limited resources

n terms of battery life and computational capacity. The Markov-

ased method introduced in [45] and the method based on non-

inear time series analysis introduced in [40] are examples of the

rediction methods that satisfy the above mentioned requirements

nd can be used to implement our mobility predictor service. 

Note that for simplicity, the mobility predictor service that we

onsider in this paper is an idealized predictor. In practice, the

bove mentioned prediction methods can implement it with high

robability as long as �predict is not large (i.e., less than or equal

o five minutes). More precisely, the mobility predictor service has

 strong accuracy property according to which the predictions are

00% accurate through the whole interval �predict . However, in re-

lity the above mentioned methods can predict the next imme-

iate location with a high accuracy (from 75% to 95% accuracy

epending on the method) and this accuracy decreases in an al-

ost linear way as �predict increases. In general, we can say that

ith these prediction methods the predictions are still highly ac-

urate for a �predict equal to five minutes (for more details see the

valuations in [40] ). Another characteristic of our mobility predic-

or service is that it makes the predictions for geometric locations.

owever, many of the existing mobility prediction methods make

redictions for symbolic locations (e.g., rooms in a building, spe-

ial areas in a map, etc... ). In fact, since with symbolic locations,

dentifying a node’s neighbors will depend directly on how sym-

olic locations are defined and since there exist different types of

ymbolic locations, in this paper for simplicity, we assume that the

redictions are made for geometric locations. We believe that our

eighbor detector algorithm can be adapted to the particular cases

here symbolic locations are used. 
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4

. The neighbor detector service 

This service was first introduced in our previous work in [5] .

ntuitively, the neighbor detector service allows a process to know

ts neighbors at a given time. Formally, it exposes the following

rimitive: 

• present ( t ): returns N ( p i , t ) i.e., the set of processes detected as

neighbors of p i at time t , where p i is the process that invokes

present . 

.1. Neighbor detector variants 

We present two variants of the neighbor detector service: the

erfect neighbor detector and the time-limited neighbor detector . As

e discuss in the following, the perfect neighbor detector presents

n ideal case of neighbor detection and is rather impractical. The

eason why we present this variant is to help the reader to better

nderstand the properties of the other variant i.e., the time-limited

eighbor detector . The time-limited neighbor detector is more practi-

al and is the variant for which we propose an implementation in

his paper. 

.1.1. Perfect neighbor detector 

By querying this variant of neighbor detector service, a mobile

rocess is able to know the set of its neighbors at any time in the

ast, present or the future. 

Perfect completeness . Let p i and p j be two correct processes, if

loc ( p j , t ) ∈ Z ( p i , r d , t ), then p j ∈ N ( p i , t ). 

Perfect accuracy . Let p i and p j be two correct processes, if p j ∈
N ( p i , t ), then loc ( p j , t ) ∈ Z ( p i , r d , t ). 

Roughly speaking, the perfect completeness property requires a

eighbor detector to detect any node that is in the neighborhood

egion at any time in the past, present or future. At the same time,

he perfect accuracy property guarantees that no false detection oc-

urs. Since in practice implementing the perfect completeness prop-

rty requires an infinite knowledge of nodes’ locations in the fu-

ure, we consider a more practical variant of the neighbor detector

ervice called the time-limited neighbor detector . We introduce this

ariant hereafter. 

.1.2. Time-limited neighbor detector 

Compared to the perfect neighbor detector , this variant has a dif-

erent completeness property. However, its accuracy property is the

ame. We define its properties, below. 

Time-limited completeness . Let p i and p j be two correct pro-

cesses and �future be a bounded time interval such that

�future > 0, if loc ( p j , t ) ∈ Z ( p i , r d , t ) and t ≤ t c + � f uture , then

p j ∈ N ( p i , t ), where t c is the time when present is invoked

at p i . 

Perfect accuracy . Let p i and p j be two correct processes, if p j ∈
N ( p i , t ), then loc ( p j , t ) ∈ Z ( p i , r d , t ). 

Similar to the perfect completeness property, the time-limited

ompleteness property requires a neighbor detector to detect any

ode that is in the neighborhood region at any time in the past or

resent. However, its ability to detect future neighbors is limited

y a bounded time duration �future . More precisely, it only detects

 node that is in the neighborhood region at any time from the

ime when present is invoked up to �future . 
3 The perfect accuracy

roperty also guarantees no false detection. 
3 For simplicity, we do not assume a time bound on the availability of the past 

eighborhood information at this point. We will discuss this further in Section 5.2.2 . 

 

a  

w  
As already stated, in this paper we propose an implementa-

ion for the time-limited neighbor detector variant. Thus, hence-

orth whenever we use the term the neighbor detector service , we

ctually refer to the time-limited neighbor detector. 

. Implementing the time-limited neighbor detector 

To implement the time-limited neighbor detector, our intuition

s as follows: since each node knows its own locations up to

predict in the future, we can think of a moving entity that travels

hrough the network, collects the location predictions of all nodes,

nd then distributes all the collected location predictions to the

odes. In this way, each node can find its neighbors at current

nd future times based on the collected location predictions. It can

lso store the collected location predictions so it can be queried

bout its past neighbors. In our solution, we consider a virtual mo-

ile node (first introduced in [14] ) to be used as the moving en-

ity. Moreover, to simplify the problem, we perform the neighbor

etection only for real nodes which are in a circular region R of

he two dimensional plane. However, using only one virtual mobile

ode to implement the neighbor detector has a main disadvantage:

s the size of the region R grows, the virtual mobile node spends

ore time to travel through the network. This can cause the col-

ected location predictions to expire before they can be used for

eighbor detection. One way to overcome this problem is to in-

rease �predict of the mobility predictor. However, as discussed in

ection 2.4 , with the existing mobility prediction methods, predic-

ions usually tend to become less accurate as �predict increases. 

Another way to deal with this problem is to decrease the trav-

ling time of the virtual mobile node. In order to do so, our solu-

ion consists of using more than one virtual mobile node. In fact,

ur solution can work with n = 2 k virtual mobile nodes where k

s a non-negative integer. Thus, the region is divided into n equal

ubregions and each subregion is associated with one virtual mo-

ile node. Virtual mobile nodes collect simultaneously the location

redictions from the real nodes in their subregions and meet at the

enter of R to share what they have collected with each other. After

he sharing, every virtual mobile node has the location predictions

ollected from the entire R . Then, the virtual mobile nodes simul-

aneously distribute the collected location predictions to the real

odes in their corresponding subregions. As we further show, as n

rows, our solution can correctly implement the neighbor detec-

or with smaller values of �predict . Intuitively, this is because as n

rows, R is divided into more and consequently smaller subregions

nd each virtual mobile node spends less time to travel through its

ubregion. 

In the following, we first describe what a virtual mobile node

s and we add n virtual mobile nodes to the system model. We

lso define the properties of the scan path i.e., the path through

hich a virtual mobile node travels in its subregion and we show

ow it can be computed. We then introduce an algorithm that im-

lements the neighbor detector in the new system model and we

rove the correctness of the algorithm. As we show in the proof,

he algorithm can tolerate the failure of the virtual mobile nodes

nder certain conditions. We also define the minimum value of

predict for which the algorithm is correct. We then show the evo-

ution of this value as n grows. Based on this evolution, we deduce

hat as the number of virtual mobile nodes grows the algorithm re-

uires smaller values of �predict to correctly implement the neigh-

or detector. 

.1. Virtual mobile node 

A virtual mobile node (also referred to as a virtual node ) is an

bstraction that is akin to a mobile node that travels in the net-

ork in a predefined trajectory. It was first introduced by Dolev
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nodes. 

4 In general, a disk can be divided using straightedge and compass into n equal 

parts if n = 2 k m where k is a non-negative integer and m is either equal to 1 or 

else m is a product of different Fermat primes [27] . 
et al. in [14] to simplify the task of designing algorithms for mobile

ad hoc networks. In fact, Dolev et al. consider two main reasons

behind the difficulty of designing algorithms for mobile ad hoc

networks: (1) the movement of a mobile node is unpredictable;

(2) mobile nodes are unreliable i.e., they can continuously join

and leave the system, they may fail or recover or be turned on

and off by the user or may sometimes choose to sleep and save

power. Thus, a virtual mobile node is designed so that it can exe-

cute any distributed algorithm that a real node can execute, how-

ever, its movement can be predefined and known in advance to

all real nodes in the network. Moreover, a virtual mobile node is

reliable (also called robust ). Roughly speaking, this means that a

virtual mobile node does not fail as long as it travels through well-

populated areas of the network [14] . 

In [14] an algorithm called Mobile Point Emulator ( MPE ) is in-

troduced, which implements the virtual mobile node abstraction

in a system model equivalent to the system model defined in this

paper. The implementation of the virtual mobile node is based on

a replicated state machine technique similar to the one originally

presented in [33] . In fact, in order to achieve the robustness of the

virtual mobile node in spite of the failure of the real nodes, the al-

gorithm replicates the state of the virtual mobile node at the real

nodes which travel near the location of the virtual mobile node.

More precisely, the algorithm defines a mobile point to be a cir-

cular region of a radius r mp , which moves according to the pre-

defined path of the virtual mobile node, i.e., at time t the center

of the mobile point coincides with the preplanned location of the

virtual mobile node at time t . The MPE replicates the state of the

virtual mobile node at every real node within the mobile point’s

region, modifying the set of replicas as the real nodes move in and

out of the mobile point’s region. MPE uses a total-order broadcast

service to ensure that the replicas are updated consistently. The to-

tal order broadcast service is built using the LocalCast communica-

tion service (defined in Section 2.2 ) and synchronized clocks which

are obtained by using a service equivalent to our global positioning

service. Note that the real nodes are only used by the MPE algo-

rithm to assist in emulating the virtual mobile node. Thereby, the

motion of a virtual mobile node may be completely uncorrelated

with the motion of the real nodes i.e., even if all the real nodes

are moving in one direction, the virtual mobile node may travel in

the opposite direction. 

Similar to a real node, a virtual mobile node can communicate

with other virtual or real nodes using the LocalCast service. Also, a

virtual mobile node is prone to crash-reboot failures. It can crash if

and only if its trajectory takes it into a region unpopulated by any

real nodes (i.e., where there are no real nodes to act as replicas),

however, it recovers to its initial state as soon as it renters a dense

area. A virtual mobile node is correct if it never fails, i.e., ∀ t ∈ T , at

least one correct real node resides in the circular region of radius

r mp around the preplanned location of the virtual mobile node at

time t . 

4.2. Adding virtual mobile nodes to the system model 

In this section, we add a set of n virtual mobile nodes V =
{ v 1 , . . . , v n } to the system model where n = 2 k and k is a non-

negative integer. Each virtual node is assigned a unique identifier.

Note that we do not provide an implementation for the virtual

nodes, however, we assume that they can be implemented by the

MPE algorithm sketched in Section 4.1 . 

Let region R be a closed disk of radius r map , centered at location

l map−center which is the origin of the two dimensional plane. Each

virtual node v i is associated with a subregion R i of R . The subregion

R is a sector of R (in the shape of a pizza slice) enclosed by two
i 
adii and an arc, where the arc subtends an angle 2 π
n (See Fig. 1 .a).

ll subregions have the same area and 

⋃ i = n 
i =1 R i = R . 4 

A virtual node can communicate with other virtual nodes or

he real nodes using the LocalCast service (defined in Section 2.2 )

here the broadcast radius equals to a constant non-negative in-

eger r com 

known globally. This constant is defined by the virtual

ode implementation (see [14] ). Moreover, similar to a real node,

 virtual node has access to the global positioning service (defined

n Section 2.3 ). 

The movement of a virtual node v i is defined by a predeter-

ined trajectory function loc ( v i , t ), which maps every t in T to a

ocation. This function is known to all virtual nodes and real nodes

n the network. The average speed of v i ’s movement is equal to

 constant v avg . This constant is defined by the speed of the real

odes (that emulate v i ) and the speed of the join protocol (a sub-

rotocol of the MPE algorithm, which enables a real node to join

he emulator set i.e., the set of real nodes that emulate v i ). Roughly

peaking, this means that v i must move slowly enough so that new

eal nodes can join the emulator set before the old real nodes leave

he emulator set [14] . 

The trajectory function of v i is defined such that it can be used

y our algorithm for the implementation of the neighbor detector.

ccording to the trajectory function, v i continuously scans the sub-

egion R i . The scans are arranged in the form of collect-distribute.

ore precisely, let l init ( v i ) be a location different from l map−center .

hen, a collect scan starts at l init ( v i ) and ends at l map−center and a

istribute scan starts at l map−center and ends at l init ( v i ) (See Fig. 1 .b).

he first scan starts at time t = 0 and is a collect scan. Collect and

istribute scans alternate and v i uses exactly the same path in the

ollect and the distribute scans. This path is called the scan path of

 i and its length is denoted by L scan −path (v i ) . The amount of time

hat v i spends in a collect scan is equal to the amount of time

hat it spends in a distribute scan. This time duration is denoted

y �scan ( v i ). 

In order to be useful for our neighbor detector algorithm, the

can path of v i should satisfy the three following properties: 

Scan completeness. Let s be a scan (collect or distribute) and

let t begin be the time when s begins, then the path traversed

by v i during s is such that ∀ location ∈ R i , ∃ t ∈ [ t begin ; t begin +
�scan (v i ) − 1] such that distance ( loc ( v i , t ), location ) ≤ r com 

. 

Equal scan path lengths. Let v j be a virtual node different from

v i , then L scan −path (v i ) = L scan −path (v j ) . 

Proportional scan path length . L scan −path (v i ) is an inverse

function of n . 

The scan completeness property guarantees that a scan covers

he entire subregion R i in terms of r com 

. With regard to the equal

can path lengths property, it has a direct result, that is, the value

f �scan is the same for all virtual nodes (recall that all virtual

odes have the same average speed v avg ). Since all virtual nodes

tart their scanning at t = 0 and with a collect scan, this guaran-

ees that all virtual nodes meet at the end of each collect scan at

 map−center . Finally, proportional scan path length guarantees that as

 (i.e., the number of virtual nodes) grows, the scan path length

nd consequently �scan of each virtual node decreases. 

In next section, we define the scan path that satisfies these

roperties and is used by the trajectory functions of the virtual
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Fig. 1. The subfigures correspond to the case where the number of virtual mobile nodes (denoted by n ) is equal to four. (a) Disk R is presented where the grey area 

corresponds to a subregion R i . (b) Each virtual mobile node scans its associated subregion in the form of collect and distribute scans. The arrows indicate the direction of 

motion. 

Fig. 2. Hexagonal tessellation of the surface of a subregion R i . Each hexagon ap- 

proximates a circle of radius r com and hence its circumradius is equal to r com . In the 

figure, we present the circle and its radius only for one hexagon. 
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.3. The scan path of a virtual mobile node 

As described in Section 4.2 , the scan path of a virtual node v i 
hould satisfy a set of properties. We start by finding the optimal

ath that satisfies the scan completeness property. We then show

hat this path also satisfies the equal scan path lengths and the pro-

ortional scan path length properties. 

The optimal path that satisfies the scan completeness property is

he shortest possible path that goes through a set of locations that

e call covering centers . Roughly speaking, the covering centers are

uch that if v i broadcasts a message at all covering centers then

he message is disseminated at all locations in R i . Thus, covering

enters are centers of disks of radius r com 

that cover the whole

urface of R i such that the number of disks is minimum. Note that

 part of the surface of some of these disks can be located out

f R i , thereby, some of the covering centers can be situated at the

oundary or even out of R i . 

Finding covering centers is a NP hard problem [29] . It can

e approximately solved by applying hexagonal tessellation (or so

alled hexagonal tiling ) [21] . More precisely, the surface of R i is

essellated using the regular hexagons of circumradius r com 

(See

ig. 2 ). Since for all virtual nodes the scan path goes through

 map−center , the tessellation made by the tessellation algorithm is

uch that one of the hexagons is centered at l map−center . The al-

orithm also ensures that the number of hexagons covering R i 
s minimum. Once the tessellation is made, the centers of the

exagons are identified as the covering centers. Thus, the scan path

an be found as the shortest possible route that visits the center

f each hexagon exactly once. This is a variant of a famous algo-

ithmic problem known as the Travelling Salesman Problem ( TSP ). In

his case, the problem can be easily solved thanks to the properties

f the hexagonal tessellation. In fact, in the hexagonal tessellation,

he distance between the centers of any two adjacent hexagons is

qual to 
√ 

3 r com 

. Therefore, the scan path can be found as the path
hat connects the centers of each pair of adjacent hexagons exactly

nce. 

The scan path that we have found satisfies the equal scan path

engths property since the tessellation of every subregion is made

y applying the same algorithm and all subregions have the same

hape and area. We would like also to show that the scan path

atisfies the proportional scan path length property. In fact, the scan

ath length of v i can be found as: 

 scan −path (v i ) = ( NOC (R i ) − 1) ×
√ 

3 r com 

(1) 

here NOC ( R i ) denotes the number of covering centers for subre-

ion R i and can be calculated by the tessellation algorithm. With-

ut applying the tessellation algorithm, we can still find an upper

ound on NOC ( R i ) and consequently on L scan −path (v i ) using lattice

heory (see Appendix A on how to find the upper bound). So, we

ave: 

 scan −path (v i ) < c 1 + 

c 2 
n 

(2) 

here c 1 and c 2 are two constants defined in terms of r map and

 com 

and whose values are defined by Eqs. (A.3) and ( A.4 ) in

ppendix A . Thus, the scan path that we have found also sat-

sfies the proportional scan path length property. As described in

ection 4.2 , a direct consequence of this property is that as n

rows, �scan of each virtual node decreases. In fact, �scan of a vir-

ual node v i can be calculated as below: 

scan (v i ) = 

L scan −path (v i ) 

v avg 
(3) 

Considering Eqs. (3) and ( 2 ) above, we find: 

scan (v i ) < 

1 

v avg 
×

(
c 1 + 

c 2 
n 

)
(4) 

As we discuss in detail in Section 4.6 , Eq. (4) plus the correct-

ess conditions of our neighbor detector algorithm imply that as n

i.e., the number of virtual nodes) grows, our neighbor detector al-

orithm remains correct with smaller values of �predict . Moreover,

n Section 5.1 , by using Eq. (4) we show that the communication

ost of our neighbor detector algorithm scales linearly with the

umber of virtual mobile nodes. 

.4. Neighbor detector algorithm 

The algorithm includes two parts: a part that is executed on

ach real node p i ( Algorithm 1 ) and a part that is executed on each

irtual node v i ( Algorithm 2 ). The algorithm relies on the move-

ent of the virtual nodes. Thus, it divides time into rounds of du-

ation �scan , where �scan is calculated by Eq. (5) and is globally

nown. 

scan = �scan (v ) where v ∈ V (5)
i i 
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Algorithm 1 Neighbor detector algorithm at real node p i . 

1: initialisation: 

2: round ← getRound ( getCurrentTime ) {assigns to round its value at current time. The first round is a collect round} 

3: noMsgSentInT hisRound ← true 

4: networkLocs ←⊥ {creates hash map networkLocs to store the location predictions of real nodes in the network} 

5: present (t) 

6: N ← ∅ {creates set N to store the neighbors of p i at time t} 

7: if networkLocs (p i , t) � = ⊥ then {checks whether a location prediction for p i at time t exists in networkLocs} 

8: for all p j ∈ networkLocs do 

9: if p j � = p i ∧ distance ( networkLocs (p j , t) , networkLocs (p i , t)) ≤ r d then 

10: N ← N ∪ p j 
11: return N 

12: upon distance ( getCurrentLocation , loc (v i , getCurrentTime ) ≤ r com 

such that v i ∈ V do 

13: if round = col l ect ∧ no MsgSentInT hisRo und then 

14: realmsg ←⊥ {creates realmsg to encapsulate the hash map locs} 

15: realmsg . locs ← predictLocations {hash map locs stores the output of the mobility predictor service} 

16: trigger broadcast ( realmsg , r com 

) 

17: noMsgSentInT hisRound ← false 

18: upon roundIsOver ( getCurrentTime ) do 

19: noMsgSentInT hisRound ← true 

20: if round = col l ect then 

21: round ← distribute 

22: else if round = distribute then 

23: round ← col l ect 

24: upon receive ( virtmsg , v i ) do {receives virtmsg from virtual mobile node v i } 

25: for all (p k , t) ∈ virtmsg . col l ectedLocs do 

26: if networkLocs (p k , t) = ⊥ then {checks if a location prediction for p k at time t does not exist in networkLocs} 

27: networkLocs (p k , t) ← virtmsg . col l ectedLocs (p k , t) {adds the location prediction for p k at time t from collectedLocs to networkLocs} 

Algorithm 2 Neighbor detector algorithm at virtual mobile node v i . 

28: initialisation: 

29: round ← getRound ( getCurrentTime ) {assigns to round its value at current time. The first round is a collect round} 

30: cov eringC ent ers ← { l 1 , . . . , l NOC (R i ) 
} { Set cov eringC ent ers contains the covering centers of subregion R i } 

31: col l ectedLocs ←⊥ {creates hash map collectedLocs to store the collected location predictions} 

32: upon receive ( realmsg , p i ) do {receives realmsg from real node p i } 

33: for all t ∈ realmsg . locs do 

34: col l ectedLocs (p i , t) ← realmsg . locs (t) {adds the location prediction for p i at time t from locs to collectedLocs} 

35: upon roundIsOver ( getCurrentTime ) do 

36: if round = col l ect then 

37: inter vir tmsg ←⊥ {creates inter vir tmsg t o encapsulate the hash map col l ectedLocs } 

38: inter vir tmsg . col l ectedLocs ← col l ectedLocs 

39: trigger broadcast ( inter vir tmsg , r com 

) 

40: round ← distribute 

41: if round = distribute then 

42: col l ectedLocs . clear () {clears the content of hash map col l ectedLocs at the end of each distribute round} 

43: round ← col l ect 

44: upon receive ( inter vir tmsg , v j ) do {receives intervirtmsg from virtual mobile node v j } 

45: col l ectedLocs . combine ( inter vir tmsg . col l ectedLocs ) {combines v i ’s col l ectedLocs with col l ectedLocs of inter vir tmsg } 

46: upon getCurrentLocation = l i such that l i ∈ cov eringC ent ers do {v i is at a covering center of subregion R i } 

47: if round = distribute then 

48: virtmsg ←⊥ {creates virtmsg to encapsulate the hash map col l ectedLocs } 

49: virtmsg . col l ectedLocs ← col l ectedLocs 

50: trigger broadcast ( virtmsg , r com 

) 
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Fig. 3. A phase in the neighbor detector algorithm, composed of a collect and a 

distribute round. Since the duration of each round is equal to �scan , the duration of 

a phase is equal to 2 × �scan . 
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In Eq. (5) above, the value of �scan ( v i ) can be found by Eq. (3) of

ection 4.3 . Since the value of �scan ( v i ) is the same for all virtual

odes, in Eq. (5) there is no difference which virtual node v i is

sed for calculation of �scan . 

There exist two types of rounds: collect and distribute rounds,

hich alternate. The first round is a collect round. Given this fact

nd since the execution of the algorithm starts at t = 0 (i.e., when

he virtual nodes start their movement by a collect scan), the col-

ect and distribute rounds coincide with the collect and distribute

cans of virtual nodes, respectively. 

The algorithm proceeds in phases . Each phase comprises a col-

ect and a distribute round (See Fig. 3 ). In the collect round, every

irtual node scans its subregion and collects the location predic-

ions sent to it by real nodes. Then, the virtual nodes share their

ollected location predictions with each other when the collect

ound terminates (i.e., when they meet at l map−center ). In the dis-

ribute round, each virtual node distributes the collected location

redictions to real nodes in its subregion. Every real node stores

he collected location predictions that it receives to use them for

eighbor detection. In the following, we discuss the algorithm in

ore detail and whenever necessary, we refer to the lines in the

lgorithm. 

The algorithm keeps informed each real and virtual node of

ound changes via two functions getRound and roundIsOver .

unction getRound is called at initialization (lines 2 and 29). It re-

urns the round type (collect or distribute) at current time. This

alue is stored in variable round . As stated previously, the first

ound is a collect round, thereby, at t = 0 , getRound returns col-

ect. 5 Function roundIsOver takes current time as parameter and

eturns a boolean. Thus, when a round terminates roundIsOver

eturns true, so that the value of variable round is changed from

ollect to distribute and vice-versa. 

Since the trajectory function of all virtual nodes are globally

nown, each real node p i can calculate its distance to every vir-

ual node at any time. Thus, at each collect round p i waits until

ts distance to a virtual node v i becomes less than or equal to r com 

note that v i can be any virtual node in V ) (line 12). Then, if p i 
as not already sent a message to any virtual node in that round,

t creates a message realmsg to send to v i (line 14). This message

ncapsulates a hash map locs which is used to store the output of

redictLocations primitive of the mobility predictor service (line

5). To store each location prediction of p i , the hash map locs uses

ne key which is the time instant for which the location is pre-

icted. For instance, locs ( t ) returns the predicted location at time

 . Once locs is assigned its value, realmsg is broadcast within the

adius r com 

, so it can be received by v i (line 16). 

Each virtual node has a hash map collectedLocs . It is used to

tore the location predictions that the virtual node collects. When

 i receives realmsg from p i , it stores every location prediction that

xists in locs in its collectedLocs map (lines 32–34). For this storage,
5 Note that the failure of a real or virtual node is of a crash-reboot type i.e., if it 

rashes it recovers to its initial state. Therefore, calling getRound at initialization, 

nables a real or virtual node to know the round type not only at t = 0 but also 

fter each recovery. 

t  

t  

s  

c  

w  

t  
wo keys are used where one key is the name of the real node for

hich the prediction is made and the other key is the time instant

or which the prediction is made. For instance, collectedLocs ( p i , t )

eturns the predicted location of p i at time t . 

When a collect round terminates (i.e., when all virtual nodes

re at l map−center ), v i creates intervirtmsg to share its collectedLocs

ith other virtual nodes (lines 35–38). It broadcasts intervirtmsg

ithin the radius r com 

, so it can be received by all virtual nodes

line 39). When a virtual node receives intervirtmsg , it combines

ts own collectedLocs with collectedLocs of intervirtmsg , so that at

he next distribute round, all virtual nodes have the same location

redictions in their collectedLocs maps (lines 44–45). 

In a distribute round, v i encapsulates its collectedLocs in a

irtmsg and broadcasts it whenever it is on a covering center of its

ubregion R i (lines 46–50). The set of covering centers denoted by

ov eringC ent ers is defined at the initialization (line 30) and can be

ound by the tessellation algorithm discussed in Section 4.3 . Thus,

 i broadcasts virtmsg on covering centers so that they are dissemi-

ated in the whole R i . 

Each real node has a hash map called networkLocs that is used

o store the location predictions of all real nodes in the network.

imilar to collectedLocs , networkLocs has two keys to store a loca-

ion prediction: one key is the name of the real node for which

he prediction is made and the other key is the time instant for

hich the prediction is made. For instance, networkLocs ( p i , t ) re-

urns the predicted location of p i at time t . The networkLocs map

s augmented in distribute rounds, i.e., when new location predic-

ions are received in collectedLocs of a virtmsg (lines 24–27). Thus,

henever primitive present (t) is invoked at p i , the map lookups

n networkLocs as well as distance comparisons are performed to

nd the real nodes which are in the neighborhood region of p i at

ime t (lines 5–9). The names of real nodes found in this way, are

tored in set N which is returned as the result (lines 10–11). 

.5. Proof of correctness 

In this section we present a proof of correctness for the algo-

ithm. As we show, under certain conditions, the algorithm cor-

ectly implements the time-limited neighbor detector abstraction

defined in Section 3 ) and can tolerate the failure of one to all vir-

ual mobile nodes. Thus, we start by describing the intuition be-

ind the proof and some of the conditions required to guarantee

he correctness of the algorithm. We also introduce some prelim-

nary notations, definitions and lemmas that are used throughout

he proof. Then, we present the proof. In particular, we define the

inimum �predict for which the algorithm is correct. This value is

hen used in Section 4.6 , where we study the impact of increasing

he number of virtual mobile nodes on it. 

.5.1. Intuition behind the proof 

As we show in the proof, the algorithm can tolerate the failure

f one to all virtual nodes under certain conditions. Recall that the

ailure of a virtual node is of a crash-reboot type: it crashes when

he area around its trajectory becomes unpopulated and it recov-

rs to its initial state as soon as it reenters a dense area. Since

he algorithm proceeds in phases, to guarantee its correctness in

pite of the failure of the virtual nodes, our intuition is as fol-

ows. We prove the correctness of the algorithm for a category of

he executions called nice executions , which basically correspond to

he executions in periodically well-populated regions such as main

quares in a downtown area. In a nice execution, virtual nodes

an fail. However, there exist time periods during a nice execution

here the whole region R is populated well enough so that all vir-

ual nodes are up. Each of such periods is long enough to contain
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Fig. 4. t b , k and t e , k of round k . 
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at least one phase that is entirely executed in it. 6 A phase that is

executed while all virtual nodes are up is called an atomic phase . In

an atomic phase, no virtual node crashes, thereby, no location pre-

diction is lost by a virtual node during the collection, sharing and

distribution of location predictions. Thus, for neighbor detection, a

real node p i should rely on the location predictions that it receives

during the distribute round of each atomic phase. Intuitively, this

means that the location predictions that p i receives during the dis-

tribution in an atomic phase should be long enough so that p i can

use them for current and future neighbor detection at least until

the distribution in the next atomic phase (as for the past neighbor

detection, p i can use the location predictions that it has received

and stored in all previous atomic phases). Note that, in the dis-

tribute round of an atomic phase, p i may receive the location pre-

dictions at the latest at the end of the round. Therefore, to guaran-

tee the correctness of the algorithm, �predict should be long enough

to ensure the current and future neighbor detection by p i , at least,

at each time instant between the end of the distribute rounds of

two consecutive atomic phases. As we further show, such �predict 

can be found based on the maximum time duration between the

end of the distribute rounds of two consecutive atomic phases. 

4.5.2. Preliminaries 

Before beginning the main part of the proof, we present

some preliminary notations, definitions and lemmas that are used

throughout the proof. In particular, we focus on formally defining

a nice execution and highlight those characteristics of a nice exe-

cution that can be used for the proof. 

In the following, we first present the preliminary notations and

definitions. We then present the preliminary lemmas. 

Preliminary notations and definitions. Here we present the prelimi-

nary notations and definitions. 

• Given two sets A and B , A ⊆B indicates that A is a subset of B . 

• P R denotes a subset of P (recall that P is the set of all real

nodes) such that ∀ p i ∈ P R , p i never leaves region R and the

movement of p i during �scan is negligible. 

• round k denotes the k th round of the algorithm, where k (also

called the index of the round ) is an integer such that k ≥ 1. 

• φi denotes the i th phase of the algorithm, where i is an integer

such that i ≥ 1. 

• d ( φi ) returns the index of the distribute round of a phase

φi . For instance, if round k is the distribute round of φi , then

d(φi ) = k . 

• t b , k and t e , k refer to the first clock tick and the last clock tick in

round k , respectively (See Fig. 4 ). Note that, t e,k = t b,k + �scan − 1 .

We call t b , k , the beginning time of round k and t e , k the end time

of round k . 
6 The existence of nice executions is realistic considering the variation of popu- 

lation density in a periodically well-populated urban region (e.g., a public square) 

during a time interval (e.g., a working day). In fact, in a periodically well-populated 

urban region, there are periods of time where the population density becomes 

so low so that the virtual nodes that scan the region become unstable (i.e., they 

crash and recover many times while traveling through their preplanned trajectory). 

However, after some bounded time duration, the population density increases high 

enough to guarantee that the virtual nodes remain up for at least some period of 

time. 

T  

a  

d

i

a

i

• Global System State. The local state of a (virtual or real) node

is a tuple that contains the value of its variables. In particu-

lar, among these variables there is a variable which indicates

whether the node is up or down. The global system state is a

vector σ whose elements are the local states of all virtual and

real nodes in the system. 

• Execution. An execution E of neighbor detector algorithm is an

infinite sequence that maps every time instant in T to a global

system state. Formally, E := (σt ) 
+ ∞ 

t=0 
where σ t is the global state

at time t ∈ T . 

• Stable and unstable periods. Let E be an execution, then E could

include two types of time periods called stable and unstable pe-

riods. A stable period is a period during which all virtual nodes

are up. On the other hand, an unstable period is a period during

which at least one virtual node is down. 

• Nice execution. Let E be an execution. Let �min 
stable 

and �max 
unstable 

be

two non-negative integers such that �min 
stable 

= 4 × �scan . We say

that E is nice if the duration of each stable period in E is at least

equal to �min 
stable 

and the duration of each unstable period in E is

at most equal to �max 
unstable 

. Moreover, the first stable period in E

starts at t = 0 . 7 

• Atomic phase. Let E be an execution. Let φi be a phase in E . Then

φi is atomic if it entirely occurs in a stable period of E , that is,

while all virtual nodes are up. 

• Nonatomic phase. Let E be an execution. Let φi be a phase in E .

Then φi is nonatomic if at least a part of it occurs in an unstable

period of E . 

reliminary Lemmas. We prove seven preliminary lemmas where

wo lemmas, i.e., Lemmas 3 and 6 , have each an associated corol-

ary. Lemmas 1 –5 are straightforward and mainly used to prove

directly or indirectly) Lemmas 6 and 7 . Lemmas 6 and 7 are im-

ortant results which are used (with Lemma 3 and its associated

orollary) for the main proof in the next section. In particular,

emma 6 proves that there exists a maximum, denoted by �gap ,

or the time duration between the end of the distribute rounds of

wo consecutive atomic phases in a nice execution. It also defines

he value of �gap . Lemma 7 shows that in a nice execution the

ime duration between the end of a round round k such that k ≥ 3

nd the end of the distribute round of the last atomic phase before

ound k has a maximum which is equal to �gap . 

In the following, we prove the lemmas and whenever necessary,

e give some additional information regarding their use and the

ntuition behind them. 

emma 1. Let E be an execution. If E is nice, then every stable period

n E contains at least one atomic phase. 

roof. If E is nice, then the duration of every stable period in E

s greater than or equal to 4 × �scan . Therefore, regardless of how

he rounds occur in a stable period, the stable period contains at

east one phase which is entirely executed in it. Hence, in this case

ach stable period contains at least one atomic phase. �

emma 2. Let E be an execution. If all virtual nodes are correct, then

 is nice. 

roof. If all virtual nodes are correct, then they are always up.

his means that there exists only one stable period in E which has

n infinite duration. Therefore, the duration of the stable period is
7 As we further discuss in Section 4.5.3 , one of the conditions for the correctness 

of the algorithm is Condition C6 according to which if present (t) of the neighbor 

etector is called, then t ≥ t e , 1 and t c ≥ t b , 3 where t c is the time when present (t) 

s called. As we show in the proof, the lower bounds for t and t c in Condition C6 

re found based on the beginning time of the first stable period in a nice execution. 

Thus, the assumption that the first stable period in a nice execution starts at t = 0 

s in fact a convention which simplifies the computation of these lower bounds. 
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8 Recall that the duration of a phase is equal to 2 × �scan time units. 
reater than �min 
stable 

= 4 × �scan and the duration of any unstable

eriod is zero and consequently less than or equal to �max 
unstable 

. �

emma 3. Let E be an execution. If E is nice, then the first phase or

1 of the algorithm is also the first atomic phase in E. 

roof. The first phase of the algorithm denoted by φ1 comprises

ound 1 and round 2 . By definition, the first stable period of a nice

xecution begins at t = 0 . Moreover, every stable period of a nice

xecution lasts at least 4 × �scan . Therefore, if E is nice, then the

rst four rounds of E are in the first stable period. Accordingly,

hase φ1 occurs entirely in the first stable period and thus, it is

tomic. Therefore, φ1 is also the first atomic phase. �

orollary 1. Let E be an execution and round k be a round in E such

hat k ≥ 3 . If E is nice, then there exists at least one atomic phase in

 which occurs before round k . 

roof. The proof follows directly from Lemma 3 . �

emma 4. Let E be an execution and S i be a stable period in E. If

here exists more than one atomic phase in S i , then there exists no

onatomic phase in S i that occurs between the atomic phases. 

roof. Let φi and φj be two atomic phases in S i such that φj is

he next atomic phase after φi . Assume for contradiction that there

xists a nonatomic phase φi + 1 after φi and before φj in S i . Since

i + 1 is nonatomic, a part of it should occur in an unstable period.

his suggests that an unstable period should exist between φi and

j , which implies that φj should occur in a stable period different

han S i which is impossible. �

emma 5. Let E be a nice execution. Then, every round in E is either

n an atomic phase or between two atomic phases. 

roof. Let round k be a round in E . From Lemma 3 , we get that the

rst phase in E is atomic, which means that round 1 and round 2 
re in an atomic phase. Thus, the lemma holds for k < 3. To show

hat the lemma also holds for k ≥ 3 we proceed as follows. By

orollary 1 we know that if k ≥ 3, there exists at least one atomic

hase before round k . Thus, to prove that the lemma holds for k ≥ 3,

e should show that round k is either in an atomic phase or there

xists an atomic phase after round k so that based on Corollary 1 ,

e can conclude that round k is between two atomic phases. In the

ollowing, we prove the lemma for k ≥ 3 by considering two pos-

ible cases. 

Case 1: round k is in an unstable period of E. Since an unstable pe-

iod of E lasts at most �max 
unstable 

, we know that there exists a stable

eriod after the unstable period, which according to Lemma 1 con-

ains at least one atomic phase. Therefore, in this case there exists

n atomic phase after round k and the lemma holds. 

Case 2: round k is in a stable period of E. Let S i denote the stable

eriod where round k occurs. By Lemma 1 , we know that S i con-

ains at least one atomic phase. So there exist two subcases: (1)

ound k is in an atomic phase of S i and the lemma holds; (2) round k 
s outside of any atomic phases of S i , which means that round k is

n a nonatomic phase that partly occurs in S i . By Lemma 4 , we

now that the nonatomic phase that contains round k cannot oc-

ur between two atomic phases of S i . Therefore, round k is either

utside and before any atomic phases of S i or outside and after

ny atomic phases of S i . We show that in both cases the lemma

olds. In fact, if round k is outside and before any atomic phases of

 i , then it means that there exists an atomic phase after round k and

he lemma holds. If round k is outside and after any atomic phases

f S i , then it means that there exists an unstable period just af-

er S i (otherwise, round k should be in an atomic phase). Since an

nstable period of E lasts at most �max 
unstable 

, we know that there

xists a stable period after the unstable period, which according
o Lemma 1 contains at least one atomic phase. Therefore, there

xists an atomic phase after round k and the lemma holds. �

Now that we have proved Lemmas 1 –5 , we can present more

mportant results based on them. The next lemma proves that

here exists a maximum, denoted by �gap , for the time dura-

ion between the end of the distribute rounds of two consecutive

tomic phases in a nice execution. It also defines the value of �gap .

emma 6. Let E be an execution. Let φi and φj be two atomic phases

n E such that φj is the next atomic phase after φi . If E is nice, then

he time duration between t e,d(φi ) 
and t e,d(φ j ) 

has a maximum de-

oted by �gap such that �gap = 6 × �scan − 2 + �max 
unstable 

. 

roof. We assume that E is nice and we consider the two possible

ases below. 

Case 1: φi and φj are in the same stable period. Since φj is the

ext atomic phase after φi and since φi and φj are in the same sta-

le period, by Lemma 4 , we know that there exists no nonatomic

hase between φi and φj . Therefore, φj can only be the phase just

fter φi (see Fig. 5 .a). Thus, in this case the time duration between

 e,d(φi ) 
and t e,d(φ j ) 

is always equal to 2 × �scan and the maxi-

um time duration between t e,d(φi ) 
and t e,d(φ j ) 

is also equal to 2

�scan . 

Case 2: φi and φj are in two different stable periods. Let S i and

 j be two different stable periods such that φi is in S i and φj is

n S j . Since φj is the next atomic phase after φi , we know that

here is no atomic phase between φi and φj . Moreover, since E

s nice by Lemma 1 we know that every stable period in E con-

ains at least one atomic phase. Therefor, there exists no stable pe-

iod between S i and S j . Accordingly, there exists only one unstable

eriod between S i and S j . Thus, in this case the maximum time

uration between t e,d(φi ) 
and t e,d(φ j ) 

corresponds to the following

ituation: the unstable period between S i and S j lasts �max 
unstable 

. In

ddition, there exist a nonatomic phase φi +1 just after φi and a

onatomic phase φ j−1 just before φj such that one time unit of

i +1 and one time unit of φ j−1 occur in the unstable period be-

ween S i and S j and 2 × �scan − 1 time units of φi +1 occur in S i and

 × �scan − 1 time units of φ j−1 occur in S j (see Fig. 5 .b). 8 Thus, the

aximum time duration between t e,d(φi ) 
and t e,d(φ j ) 

in this case

s equal to 2 × (2 × �scan − 1) + �max 
unstable 

+ 2 × �scan = 6 × �scan −
 + �max 

unstable 
. 

In each case described above, the time duration between t e,d(φi ) 

nd t e,d(φ j ) 
has a maximum. In Case 1, the maximum is equal to

 × �scan . In Case 2, it is equal to 6 × �scan − 2 + �max 
unstable 

. Hence,

gap is equal to 6 × �scan − 2 + �max 
unstable 

. �

The value of �gap defined by Lemma 6 corresponds to nice exe-

utions in general. The following corollary of Lemma 6 defines the

alue of �gap in a special case of nice executions, i.e., where all vir-

ual nodes are correct. This value of �gap is smaller than the value

efined in Lemma 6 . We will use this value in Section 4.5.3 to de-

ne the minimum �predict required for the correctness of the algo-

ithm in the special case where all virtual nodes are correct. 

orollary 2. If all virtual nodes are correct, then �gap = 2 × �scan . 

roof. Let E be the execution considered in Lemma 6 . Let φi 

nd φj be the two atomic phases considered in Lemma 6 . From

emma 2 , we know that if all virtual nodes are correct, then E is

ice. Moreover, if all virtual nodes are correct, E contains only one

table period and no unstable period. Therefore, there exists only

ne case, i.e., φi and φj are in the same stable period. By proof

f Lemma 6 , we know that the maximum time duration between
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Fig. 5. Examples of occurrence of two consecutive atomic phases φ i and φ j in a nice execution. The cases correspond to the cases of the proof of Lemma 6 . 
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 e,d(φi ) 
and t e,d(φ j ) 

in this case is equal to 2 × �scan . Hence, �gap is

equal to 2 × �scan . �

Our final preliminary lemma shows that in a nice execution the

time duration between the end of a round round k such that k ≥ 3

and the end of the distribute round of the last atomic phase be-

fore round k has a maximum. This maximum is equal to the time

duration �gap which is already defined by Lemma 6 . Note that the

following lemma is defined for k ≥ 3 since by Corollary 1 we know

that there exists at least one atomic phase before round k if k ≥ 3. 

Lemma 7. Let E be a nice execution. Let round k be a round in E such

that k ≥ 3 . Let φi be the last atomic phase before round k . Then, the

maximum time duration between t e,d(φi ) 
and t e , k is equal to �gap . 

Proof. By Lemma 5 , round k occurs either in an atomic phase or

between two atomic phases. Thus, let φj be the atomic phase just

after φi , we know that round k occurs either between φi and φj or

in φj . Therefore, we can say that round k can be, at the latest, the

distribute round of φj . From Lemma 6 , we get that the maximum

time duration between t e,d(φi ) 
and t e,d(φ j ) 

is equal to �gap . Hence,

the lemma holds. �

4.5.3. The proof 

We prove the correctness of the algorithm under a set of condi-

tions. In particular, we define the minimum �predict for which the

algorithm is correct in different cases of nice executions i.e., in the

general case as well as in the special case where all virtual mo-

bile nodes are correct. Thus, in the following, we first introduce

the conditions under which the algorithm is correct and formally

describe the meaning and the implication of each condition. We

then introduce the theorems and the lemmas that are used for the

proof. 

Note that in this section, �predict refers to the prediction interval

of the mobility predictor service (defined in Section 2.4 ), �future 

refers to the time duration defined in the time-limited completeness

property of the neighbor detector (stated in Section 3.1.2 ) and �gap 

refers to the time duration defined in Lemma 6 . 

Conditions. We prove that the algorithm is correct under the con-

ditions listed hereafter. 

1. We consider a nice execution for the proof. 
2. The value of the constant d defined in the reliable delivery prop-

erty of the LocalCast service (stated in Section 2.2 ) is negligible.

3. The execution time of lines 36–40 and line 45 of the algorithm

is negligible. 

4. �predict = 2 × �scan − 1 + �gap + � f uture . 

5. Let p i and p j be the processes defined in the time-limited

completeness property of the neighbor detector (stated in

Section 3.1.2 ), then p i , p j ∈ P R . 

6. If present (t) of the neighbor detector is called, then t ≥ t e , 1 
and t c ≥ t b , 3 where t c is the time when present (t) is called. 

Informally speaking, Condition C1 enables us to use the char-

cteristics of a nice execution (stated in the preliminary lemmas

f Section 4.5.2 ) to prove the correctness of the algorithm. Condi-

ion C2 plus the reliable delivery property of the LocalCast service

stated in Section 2.2 ) ensure that a node which remains for a neg-

igible time within the broadcast radius of the sender, will deliver

he broadcast message with negligible delay. Condition C3 guaran-

ees that the creation of a intervirtmsg message (i.e., the message

sed by a virtual node to share its collected location predictions

ith other virtual nodes) and the combination of the location pre-

ictions collected by different virtual nodes takes a negligible time.

his condition plus some other properties imply that the sharing of

ollected location predictions between virtual nodes takes a negli-

ible time. Condition C4 defines a value of �predict for which the

lgorithm is correct. This value is long enough to ensure the cur-

ent and future neighbor detection by a real node at each time in-

tant between the end of the distribute rounds of two consecutive

tomic phases. As we show in the proof, the value defined in Con-

ition C4 is in fact the minimum value of �predict for which the

lgorithm is correct. Condition C5, assumes that processes p i and

 j defined in the time-limited completeness property of the neigh-

or detector are in set P R . This means that p i and p j are always in

egion R and their movements are negligible during �scan . As we

how in the poof, this condition plus some other properties en-

ure that in the collect as well as in the distribute round of an

tomic phase, there exists a time when p i and p j are within dis-

ance r com 

to a virtual node and thus, can communicate with it. Fi-

ally, Condition C6 implies that the neighbor detection is not guar-

nteed for time instants before t e , 1 (i.e., the end time of round 1 )

nd present (t) is called in round k where k ≥ 3. 
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heorems and Lemmas. We prove four theorems. The main

heorem, which proves the correctness of the algorithm, is

heorem 3 . The proof of Theorem 3 relies on Theorems 1 and 2 .

heorem 1 proves that the algorithm satisfies the time-limited com-

leteness property of the time-limited neighbor detector abstrac-

ion (stated in Section 3.1.2 ). To prove Theorem 1 , we use three

elper Lemmas, that is, Lemmas 8, 9 and 10 . Each helper lemma

lso relies for its proof on some of the preliminary lemmas intro-

uced in the previous section. Theorem 2 proves that the algorithm

atisfies the perfect accuracy property of the time-limited neighbor

etector abstraction (stated in Section 3.1.2 ). The proof of this the-

rem is straightforward and relies on no lemma. Our final theo-

em, Theorem 4 , proves that the minimum �predict for which the

lgorithm is correct is equal to the one defined in Condition C4.

he proof of this theorem relies on Theorems 3, 1 and Corollary 4 ,

hich is the associated corollary of Lemma 10 . 

In the following, we first prove the helper lemmas for

heorem 1 . We then prove Theorems 1 –4 , respectively. Note that

hroughout the proof, whenever necessary we refer to the lines of

he algorithm. 

Before presenting the helper lemmas for Theorem 1 , we de-

cribe the key idea behind the proof of Theorem 1 . As previously

tated according to Theorem 1 , the algorithm satisfies the time-

imited completeness property. Roughly speaking, this property re-

uires a process p i to detect any process p j that is in the neighbor-

ood region of p i at any time in the past, present and up to interval

future in the future. In the algorithm a process uses the location

redictions that it stores in its networkLocs for neighbor detection.

hereby, in order to prove Theorem 1 , by using the helper lemmas

e basically prove that: (1) at the distribute round of each atomic

hase, p i receives accurate location predictions for both p i and p j 
nd stores the predictions in its networkLocs ; (2) the location pre-

ictions stored in networkLocs are long enough so that at any time

nstant in a round k such that k ≥ 3, p i has enough predictions to

etect past, present and future neighbors. The reason why k ≥ 3,

s that in a nice execution, the first distribute round which occurs

n an atomic phase is round 2 . The helper lemmas 9 and 10 each

ave a corollary. These corollaries are later used by Theorem 4 to

rove that the value of �predict defined in Condition C4, is also the

inimum �predict for which the algorithm is correct. 

emma 8. Let p i and p j be the processes defined in the time-limited

ompleteness property of the neighbor detector. Let round k be the dis-

ribute round of an atomic phase. Then, in round k , process p i receives

 virtmsg from a virtual mobile node with collectedLocs map which

ontains accurate location predictions for both p i and p j . Moreover, all

ocation predictions are defined for the time interval [ t e,k −1 ; t b,k −1 +
predict ] . 

roof. If round k is a distribute round in an atomic phase, then

ound k −1 is a collect round in the same atomic phase. According to 

ondition C5, p i , p j ∈ P R . Therefore, p i and p j are always in region

 and their movements are negligible during �scan . Moreover, the

can path of each virtual node guarantees the scan completeness

roperty (stated in Section 4.2 ) which implies that in each round,

or each location l in a subregion R i scanned by virtual node v i ,

here exists a time when l is within distance r com 

to v i . Consider-

ng these facts and since in round k −1 all virtual nodes are up, then

n round k −1 there exists a time when the distance of p i and p j to a

irtual node becomes less than or equal to r com 

. According to the

lgorithm, in a collect round, as soon as a real node realizes that is

ithin a distance r com 

to a virtual node, it sends its location pre-

ictions in locs map to the virtual node (lines 12–16). Therefore, in

ound k −1 both p i and p j send their locs maps to a virtual node. The

trong accuracy property of the mobility predictor service (stated

n Section 2.4 ) guarantees that the location predictions of p i and

 j in their locs maps are accurate. Moreover, in round k −1 , if a real
ode is within a distance r com 

to a virtual node at the earliest pos-

ible time (i.e., at t b,k −1 or the beginning time of the round), its

ocs map is defined for time interval T 1 = [ t b,k −1 ; t b,k −1 + �predict ] .

n the other hand, if in round k −1 a real node is within a distance

 com 

to a virtual node at the latest possible time (i.e., t e,k −1 or

he end time of the round), its locs map is defined for time in-

erval T 2 = [ t e,k −1 ; t e,k −1 + �predict ] . The intersection of T 1 and T 2 
s T 3 = [ t e,k −1 ; t b,k −1 + �predict ] . Thus, regardless of the time when

 i and p j are within a distance r com 

to a virtual node in round k −1 ,

heir locs maps contain location predictions for time interval T 3 .

ondition C2 plus the reliable delivery property of the underlying

roadcast (stated in Section 2.2 ) ensure that a node which remains

or a negligible time within the broadcast radius of the sender, will

eliver the broadcast message with negligible delay. Thus, consid-

ring Condition C2, the reliable delivery property of the underlying

roadcast and the fact that in round k −1 all virtual nodes are up,

e know that the communication between a virtual node and a

orrect real node in round k −1 is reliable and takes negligible delay.

oreover, according to the algorithm, a virtual node stores all the

ocation predictions received from the real nodes in its collected-

ocs map (lines 32–34). Therefore, the location predictions sent by

 i and p j in round k −1 are received and stored by the virtual nodes

hich are in their proximity in round k −1 . 

According to the algorithm, when round k −1 terminates, virtual

odes share their own collectedLocs with each other by broadcast-

ng intervirtmsg messages (lines 36–40). Then, they combine the

eceived collectedLocs with their own collectedLocs (line 45). Con-

idering Condition C2, the reliable delivery property of the underly-

ng broadcast and the fact that all virtual nodes are up and meet

hen round k −1 (which is a collect round) terminates, we know that

he communication between virtual nodes is reliable and takes

egligible time. Condition C3 also guarantees that the creation of

 intervirtmsg message and the combination of collectedLocs maps

akes a negligible time. As a result, at the beginning of round k ,

hich is a distribute round, all the virtual nodes have the location

redictions of p i and p j in their collectedLocs . According to the algo-

ithm, in round k each virtual node v i encapsulates its collectedLocs

ap in a virtmsg and broadcasts it at the covering centers of its

ubregion R i (lines 46–50). As previously stated, according to Con-

ition C5, p i ∈ P R , which means that p i is always in R and its move-

ent during �scan is negligible. We also know that in round k , all

irtual nodes are up. Therefore, regardless of the subregion where

 i is found, there exists a time in round k when p i is within the

roadcast radius of a virtual node which broadcasts virtmsg . Condi-

ion C2 and the reliable delivery property of the underlying broad-

ast, also guarantee that virtmsg will be received by p i in a neg-

igible time. Therefore, we know that regardless of the subregion

here p i is found in round k , it receives a virtmsg encapsulating

he collectedLocs and broadcast by a virtual node, in round k . As we

ave just shown, the collectedLocs map contains accurate location

redictions for both p i and p j and all the location predictions are

efined for time interval T 3 . Hence, the Lemma holds. �

emma 9. Let p i and p j be the processes defined in the time-limited

ompleteness property of the neighbor detector. Let phase φi be an

tomic phase. Then, once φi terminates, networkLocs of p i contains

ccurate location predictions for both p i and p j , which are all defined

or the time interval [ t e, 1 ; t e,d(φi ) 
+ �gap + � f uture ] . 

roof. For the proof we use induction. 

Base Case: the first atomic phase. From Condition C1, we get

hat the execution that we consider for the proof is nice. Thus,

rom Lemma 3 , we get that in a nice execution, the first phase

r φ1 is also the first atomic phase. According to the algo-

ithm, φ1 comprises round 1 and round 2 where round 1 is a col-

ect round and round 2 is a distribute round. Since round 2 is a

istribute round of an atomic phase, by Lemma 8 we know that
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in round 2 , p i receives the accurate location predictions for both

p i and p j and the predictions are all defined for time interval

T 1 = [ t e, 1 ; t b, 1 + �predict ] . By replacing �predict by its value defined

in Condition C4, we have T 1 = [ t e, 1 ; t b, 1 + 2 × �scan − 1 + �gap +
� f uture ] = [ t e, 1 ; t e, 2 + �gap + � f uture ] . Since t e, 2 = t e,d(φ1 ) 

, we have

T 1 = [ t e, 1 ; t e,d(φ1 ) 
+ �gap + � f uture ] . According to the algorithm, p i 

stores all the received location predictions in networkLocs and uses

them for neighbor detection (lines 24–27). Therefore, once the first

atomic phase terminates, process p i has the accurate location pre-

dictions for both p i and p j which are all defined for the time inter-

val T 1 . Hence, the lemma holds in this case. 

Inductive Step. We assume that the lemma holds for an atomic

phase φi which is either the first atomic phase or after the first

atomic phase. Then, we wish to show that the lemma holds for φj 

which is the next atomic phase after φi . By inductive hypothesis

we know that once φi terminates, networkLocs of p i contains ac-

curate location predictions for both p i and p j , which are all valid

for the time interval T 1 = [ t e, 1 ; t e,d(φi ) 
+ �gap + � f uture ] . According

to Condition C1, the execution that we consider is nice, therefore,

by Lemma 6 , we know that the maximum time duration between

 e,d(φi ) 
and t e,d(φ j ) 

is equal to �gap . Thus, let T 2 = [ t e, 1 ; t e,d(φ j ) 
+

� f uture ] , we know that once φi terminates, networkLocs of p i con-

tains accurate location predictions for both p i and p j , which are

valid for the time interval T 2 since T 2 ⊆T 1 . Moreover, by Lemma 8 ,

we know that in the distribute round of φj , the process p i receives

the accurate location predictions for both p i and p j and the predic-

tions are defined for the time interval T 3 = [ t e,d(φ j ) −1 ; t b,d(φ j ) −1 +
�predict ] . By replacing �predict by its value defined in Condi-

tion C4, we have T 3 = [ t e,d(φ j ) −1 ; t b,d(φ j ) −1 + 2 × �scan − 1 + �gap +
� f uture ] = [ t e,d(φ j ) −1 ; t e,d(φ j ) 

+ �gap + � f uture ] . According to the al-

gorithm, p i stores all the received location predictions in network-

Locs and uses them for neighbor detection (lines 24–27). Thus,

when φj terminates, networkLocs of p i contains accurate location

predictions for both p i and p j , which are defined for time inter-

val T 4 = T 2 ∪ T 3 = [ t e, 1 ; t e,d(φ j ) 
+ �gap + � f uture ] . Hence, the lemma

holds in this case. 

Since the base case holds and since the inductive step holds,

the lemma holds. �

Corollary 3. Let �min 
predict 

be the minimum value of �predict for which

Lemma 9 holds, then �min 
predict 

= 2 × �scan − 1 + �gap + � f uture (i.e.,

the value defined in Condition C4). 

Proof. For the proof we show that if �min 
predict 

= 2 × �scan − 1 +
�gap + � f uture , then Lemma 9 holds for �predict ≥ �min 

predict 
and

it does not hold for �predict < �min 
predict 

. Thus, we assume that

�predict = �min 
predict 

+ �di f f where �di f f = �predict − �min 
predict 

and we

consider the two following cases: 

Case 1 �predict ≥ �min 
predict 

. Consider the proof of Lemma 9 .

Then, in Base Case of the induction to calculate T 1 , replace

�predict by �min 
predict 

+ �di f f . If �min 
predict 

= 2 × �scan − 1 + �gap +
� f uture , then T 1 = [ t e, 1 ; t e, 2 + �gap + � f uture +�di f f ] . As t e, 2 =
 e,d(φ1 ) 

, we have T 1 = [ t e, 1 ; t e,d(φ1 ) 
+ �gap + � f uture +�di f f ] . Since

in this case �diff ≥ 0, then [ t e, 1 ; t e,d(φ1 ) 
+ �gap + � f uture ] ⊆ T 1 

and the lemma holds for Base Case of the induction. Also, in In-

ductive Step of the induction, to calculate T 3 , replace �predict by

�min 
predict 

+ �di f f . If �min 
predict 

= 2 × �scan − 1 + �gap + � f uture , then

T 3 = [ t e,d(φ j ) −1 ; t e,d(φ j ) 
+ �gap + � f uture + �di f f ] and T 4 = T 2 ∪ T 3 =

[ t e, 1 ; t e,d(φ j ) 
+ �gap + � f uture + �di f f ] . Since in this case �diff ≥ 0,

then [ t e, 1 ; t e,d(φ j ) 
+ �gap + � f uture ] ⊆ T 4 and the lemma holds for

Inductive Step of the induction. So, Lemma 9 holds in this case. 

Case 2 �predict < �min 
predict 

. Consider the proof of Lemma 9 . Then,

in Base Case of the induction to calculate T 1 , replace �predict by
min 
predict 

+ �di f f . If �min 
predict 

= 2 × �scan − 1 + �gap + � f uture , then

 1 = [ t e, 1 ; t e, 2 + �gap + � f uture +�di f f ] . As t e, 2 = t e,d(φ1 ) 
, we have

 1 = [ t e, 1 ; t e,d(φ1 ) 
+ �gap + � f uture +�di f f ] . Since in this case �diff

 0, then T 1 is a subset of [ t e, 1 ; t e,d(φ1 ) 
+ �gap + � f uture ] such

hat T 1 is not equal to [ t e, 1 ; t e,d(φ1 ) 
+ �gap + � f uture ] . Therefor,

he lemma does not hold for Base Case of the induction. So,

emma 9 does not hold in this case. �

emma 10. Let p i and p j be the processes defined in the time-limited

ompleteness property of the neighbor detector. Then, at every round k 
uch that k ≥ 3, networkLocs of p i contains accurate location pre-

ictions for both p i and p j , which are defined for the time interval

 t e, 1 ; t e,k + � f uture ] . 

roof. By Condition C1, we know that the execution that we con-

ider for the proof is nice. By Corollary 1 , which is a corollary of

emma 3 , we know that there exists at least one atomic phase

hich occurs before round k . Let φi be the last atomic phase before

ound k . By Lemma 9 , we know that once φi terminates, network-

ocs contains accurate location predictions for both p i and p j for

he time interval [ t e, 1 ; t e,d(φi ) 
+ �gap + � f uture ] . By Lemma 7 , we

now that the maximum time duration between t e,d(φi ) 
and t e , k 

s equal to �gap . Thus, in round k , networkLocs of p i contains accu-

ate location predictions for both p i and p j for the time interval

 t e, 1 ; t e,k + � f uture ] . �

orollary 4. The minimum value of �predict for which Lemma

0 holds is �min 
predict 

= 2 × �scan − 1 + �gap + � f uture . 

roof. Consider the proof of Lemma 10 . This proof relies on

emma 9 which states that once φi terminates, networkLocs of p i 
ontains accurate location predictions for both p i and p j , which

re defined for the time interval [ t e, 1 ; t e,d(φi ) 
+ �gap + � f uture ] .

his time interval is the minimum time interval required to prove

emma 10 , mainly because �gap is the maximum (and hence,

he least upper bound) for the time duration between t e,d(φi ) 
and

 e , k . Moreover, By Corollary 3 , which is a corollary of Lemma 9 ,

e know that �min 
predict 

= 2 × �scan − 1 + �gap + � f uture , is the min-

mum value for which Lemma 9 holds. Therefore, based on the

bove arguments, �min 
predict 

= 2 × �scan − 1 + �gap + � f uture is the

inimum value for which Lemma 10 holds. �

heorem 1. The neighbor detector algorithm satisfies the time-

imited completeness property. 

roof. From Condition C6, we have t c ≥ t b , 3 , which means that

resent (t) is called in round k such that k ≥ 3. Also, t ≥ t e , 1 implies

hat the neighbor detection is not guaranteed for time instants be-

ore t e , 1 . Thus, considering Condition C6, we can reformulate the

heorem as follows. Let p i and p j be the two correct processes de-

ned in the time-limited completeness property. Let present (t) be

nvoked at p i in round k such that k ≥ 3. If loc ( p j , t ) ∈ Z ( p i , r d , t )

nd t e, 1 ≤ t ≤ t c + � f uture , then p j ∈ N ( p i , t ) where t c is the time

hen present (t) is called at p i . For the proof, we proceed as fol-

ows. By Lemma 10 , we know that at every round k such that k ≥ 3,

etworkLocs of p i contains accurate location predictions for both p i 
nd p j for the time interval T 1 = [ t e, 1 ; t e,k + � f uture ] . We know that

n round k , t c ∈ [ t b,k ; t e,k ] . Thus, let T 2 = [ t e, 1 ; t c + � f uture ] we have

 2 ⊆T 1 . Therefore, in round k , networkLocs of p i contains accurate lo-

ation predictions for both p i and p j for T 2 . Since the algorithm

uarantees the correct neighbor matching based on calculating the

istance between the predicted locations (line 9), if loc ( p j , t ) ∈ Z ( p i ,

 d , t ), then p j ∈ N ( p i , t ) for ∀ t ∈ T 2 . So, the theorem holds. �

We next prove Theorem 2 according to which the algorithm

orrectly implements the perfect accuracy property. Roughly speak-

ng, this property guarantees that no false neighbor detection oc-

urs. Since for neighbor detection a process uses the location pre-
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ictions stored in its networkLocs , to prove the theorem we basi-

ally show that: (1) the location predictions in networkLocs are in-

eed collected from the real nodes and are not created by the com-

unication links; (2) the locations are predicted accurately and (3)

he algorithm correctly detects the neighbors of a process by cal-

ulating the distance between the predicted locations. 

heorem 2. The neighbor detector algorithm satisfies the perfect ac-

uracy property. 

roof. Let p i and p j be the processes defined in the perfect accu-

acy property, according to the algorithm, if p j ∈ N ( p i , t ), there ex-

sts a round during which p i has received from a virtual node a

irtmsg with a collectedLocs map such that a location prediction for

ey pair ( p j , t ) exists in virtmsg . collectedLocs . The integrity property

f the underlying broadcast (stated in Section 2.2 ) guarantees that

he virtmsg is indeed sent by a virtual node. According to the al-

orithm, the collectedLocs map of the virtmsg is created by com-

ining the collectedLocs of all virtual nodes in the system (line 45).

hese collectedLocs are encapsulated in intervirtmsg s and received

rom virtual nodes when a collect round terminates. The integrity

roperty of the underlying broadcast guarantees that each inter-

irtmsg is indeed sent by a virtual node. The collectedLocs of inter-

irtmsg s contain location predictions that are collected by virtual

odes during the collect round. In the collect round, the location

redictions are sent by real nodes in locs maps of realmsg s (lines

2–34). The integrity property of the underlying broadcast guaran-

ees that each realmsg received from a real node is indeed sent by

hat real node. The strong accuracy property of the mobility pre-

ictor service (stated in Section 2.4 ) guarantees that the location

redictions in locs maps are accurate. Moreover, the algorithm only

etects p j as a neighbor of p i at time t if the distance between their

redicted locations at t is less than or equal to r d (line 9). Hence, if

 j ∈ N ( p i , t ), then loc ( p j , t ) ∈ Z ( p i , r d , t ) and the theorem holds. �

heorem 3. The neighbor detector algorithm correctly implements

he time-limited neighbor detector service. 

roof. By Theorem 1 , the algorithm guarantees the time-limited

ompleteness property. By Theorem 2 , the algorithm guarantees the

erfect accuracy property. Hence, Theorem 3 holds. �

heorem 4. The minimum value of �predict for which neighbor detec-

or algorithm correctly implements the time-limited neighbor detector

ervice is �min 
predict 

= 2 × �scan − 1 + �gap + � f uture . 

roof. According to Theorem 3 , the algorithm correctly imple-

ents the time-limited neighbor detector service. For the proof of

heorem 3 we used Theorem 1 which itself relies upon Lemma 10 .

y Corollary 4 , which is a corollary of Lemma 10 , we know that
min 
predict 

= 2 × �scan − 1 + �gap + � f uture is the minimum value for

hich Lemma 10 holds. Hence, Theorem 4 holds. �

orollary 5. In the general case of nice executions �min 
predict 

= 8 ×
scan + �max 

unstable 
+ � f uture − 3 and in a special case of nice exe-

utions where all virtual nodes are correct �min 
predict 

= 4 × �scan +
f uture − 1 . 

roof. In Theorem 4 , �min 
predict 

is defined as a function of �gap .

rom Lemma 6 , we get that for nice executions in general �gap =
 × �scan − 2 + �max 

unstable 
. However, by Corollary 2 , which is a corol-

ary of Lemma 6 , we know that in a special case of nice execu-

ions where all virtual nodes are correct, �gap = 2 × �scan . Thus,

he corollary holds if in �min 
predict 

we replace �gap with its value for

ach case. �

Since �scan and �future are positive integers and �max 
unstable 

is a

on-negative integer, from Corollary 5 , we conclude that �min 
predict 
n the case that all virtual nodes are correct is smaller than in

he general case of nice executions. This result is very intuitive. In

act, in the general case of nice executions the location predictions

hould be long enough to do not expire during the unstable peri-

ds where virtual nodes crash. In the case where all virtual nodes

re correct, there is no unstable period, therefore, the predictions

o not need to be as long as in the general case. 

.6. Impact of increasing the number of virtual mobile nodes on 
min 
predict 

As discussed at the beginning of Section 4 , one of our motiva-

ions for designing a neighbor detector algorithm based on multi-

le virtual mobile nodes, was that by growing the number of vir-

ual mobile nodes (denoted by n ), we can reduce �predict required

or the correctness of the algorithm. Thus, here we discuss the im-

act of increasing n on �min 
predict 

(defined by Theorem 4 ). In order

o do so, we first find an upper bound on �min 
predict 

where the up-

er bound is a function of n . To find the upper bound we pro-

eed as follows. In Corollary 5 , which is the associated corollary

f Theorem 4 , �min 
predict 

is expressed as a function of �scan (both in

he general case of nice executions as well as in the case where

ll virtual nodes are correct). By Eq. (5 ) of Section 4.4 , we know

hat �scan is equal to �scan ( v i ) where v i can be any virtual node in

he set of all virtual nodes in the system. Moreover, in Eq. (4) of

ection 4.3 we have already defined an upper bound for �scan ( v i )

here the upper bound is a function of n . Considering these facts,

e find the following upper bound for �min 
predict 

: 

min 
predict < c ′ 1 + 

c ′ 2 
n 

(6) 

here c ′ 1 and c ′ 2 are two constants defined as follows. Let c 1 and c 2 
e the constants in Eq. (4) and whose values are defined by Eqs.

A .3) and ( A .4 ) in Appendix A . Then, for the general case of nice

xecutions, we have: 

 

′ 
1 = 

8 

v avg 
× c 1 − 3 + �max 

unstable + � f uture (7)

 

′ 
2 = 

8 

v avg 
× c 2 (8) 

And in the special case of nice executions where all virtual

odes are correct, we have: 

 

′ 
1 = 

4 

v avg 
× c 1 − 1 + � f uture (9) 

 

′ 
2 = 

4 

v avg 
× c 2 (10) 

According to the Eq. (6) , as n grows �min 
predict 

decreases. Roughly

peaking, this means that as the number of virtual nodes grows

he algorithm requires smaller values of �predict to correctly imple-

ent the neighbor detector. However, note that as n approaches

nfinity, the right hand side of the equation approaches c ′ 
1 

which

s a constant. In practice, this means that if the number of virtual

odes is very large, adding more virtual nodes does not reduce any

ore the minimum value of �predict required for correctness of the

lgorithm. 

. Performance discussion 

In this section we discuss two topics related to the performance

f our algorithm, namely its scalability with respect to the number

f virtual nodes and the optimizations which can improve its per-

ormance. 
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5.1. Scalability with respect to the number of virtual mobile nodes 

As discussed in Section 4.6 , one of the advantages of our neigh-

bor detector algorithm is that as n (i.e., the number of virtual

nodes) grows the algorithm requires smaller values of �predict to

correctly implement the neighbor detector. However, adding more

virtual nodes also affects the consumption of resources such as en-

ergy and bandwidth. Communication is the main cause of energy

and bandwidth consumption in a network executing the neighbor

detector algorithm. Therefore, in this section we study the impact

of increasing n on the communication cost . Note that since the algo-

rithm is round-based and there exist an infinite number of rounds,

we define the communication cost for one round, which can be

measured by the number of broadcasts (via the underlying Local-

Cast service) in a round. 

Let NOB ( R i ) denote the number of broadcasts in a subregion

R i during a round. Basically, NOB ( R i ) is an increasing function of

�scan ( v i ) (recall that v i is the virtual node associated to R i ). In fact,

if �scan ( v i ) increases, v i scans its subregion longer. Consequently,

more real nodes emulate v i , which results in more broadcasts. In

addition, if the round is a collect round, more real nodes send their

predictions to v i and if the round is a distribute round, v i broad-

casts the location predictions longer. Let maximum broadcast rate

( mbr ) denote the maximum number of broadcasts per time unit in

any subregion, we have: 

NOB (R i ) ≤ mbr × �scan (v i ) (11)

Note that mbr is a constant and independent of n . In fact, mbr is

a function of the number of real nodes that are within a distance

r mp and/or r com 

of the location of v i per time unit. These are the

real nodes that emulate v i or send their location predictions to v i .

As in our study we assume that the real node density, r mp and r com 

are constant, then mbr is also a constant. 

Let NOB ( R ) denote the number of broadcasts in the entire re-

gion R during a round (recall that R is the region for which the

neighbor detection is implemented). Based on Eq. (11) and since

the value of �scan is the same for all virtual nodes, we can find

the following upper bound on NOB ( R ): 

NOB (R ) ≤ n × mbr × �scan (v i ) (12)

Considering Eq. (12) and Eq. (4) of Section 4.3 , which defines

an upper bound for �scan ( v i ), we have: 

NOB (R ) < 

n × mbr × c 1 
v avg 

+ 

mbr × c 2 
v avg 

(13)

where c 1 and c 2 are the constants of Eq. (4) and whose values are

defined by Eqs. (A.3) and ( A.4 ) in Appendix A . Based on Eq. (13) ,

we know that the number of broadcasts in a round has a com-

plexity of O(n ) . This means that the communication cost of the

algorithm scales linearly with the number of virtual mobile nodes.

Although there exists no widely-accepted definition of scalability

in the literature, it is usually assumed that an algorithm is scalable

if its cost is less than O(n 2 ) [47] . Therefore, we can say that the al-

gorithm is scalable (in terms of communication cost) with respect

to the number of virtual nodes. 

5.2. Performance optimization 

It is beyond the scope of this paper to present a deployment

of the neighbor detector algorithm in a real network. Here, we

only discuss some ways in which the neighbor detector algorithm

can be optimized for deployment purposes. It would be interesting

to experiment with a real deployment to determine the extent to

which these optimizations can be applied and whether they can

effectively im prove the performance of the algorithm. 
Since the neighbor detector algorithm relies on virtual mobile

odes, optimizing the implementation of the virtual mobile nodes

ndirectly optimizes the neighbor detector algorithm. Thus, in the

ollowing we first discuss ways in which the implementation of the

irtual mobile nodes can be optimized. We then discuss ways in

hich the neighbor detector algorithm can be directly optimized. 

.2.1. Optimizing the implementation of the virtual mobile nodes 

In this paper we assumed that the virtual mobile nodes are im-

lemented by the MPE algorithm sketched in Section 4.1 . The MPE

lgorithm has a number of limitations. In particular, it requires sig-

ificant amounts of communication and power consumption [14] .

oreover, it relies on the LocalCast service, a powerful local com-

unication service which is both reliable and synchronous (i.e.,

t delivers the message after a bounded time interval). Below, we

uggest two ways to deal with these limitations. 

ptimizing the MPE algorithm. In [14] , Dolev et al. propose some

ptimizations for the MPE algorithm. These optimizations mainly

educe the number of message exchanges between the real nodes,

hich results in saving power as well. For instance, if a (tem-

orary) leader is elected within a mobile point, and the leader

nitiates all the transitions for the replica, conflicting requests

re avoided and power is saved. The interested reader can refer

o [14] for more detail regarding these optimizations. Moreover, ac-

ording to Dolev et al. the MPE algorithm can be correctly imple-

ented using an underlying broadcast service that works in par-

ially synchronous environments. They also propose some broad-

ast algorithms that can be used for implementing the MPE al-

orithm in such environments. The interested reader can refer

o [15] for more detail. 

sing a simpler algorithm than the MPE algorithm to implement the

irtual mobile nodes. In [14] , in addition to the MPE algorithm,

olev et al. also describe an agent-based algorithm to implement

he virtual mobile node abstraction. The algorithm uses a mobile

gent, which is a special program (or as called in [14] , a dynamic

rocess ) that jumps from one real node to another, moving in the

irection specified by the trajectory function of the virtual mobile

ode. An agent hitches a ride with a host that is near to the spec-

fied location of the virtual mobile node. Compared to the MPE

lgorithm, this algorithm is simpler and more efficient (i.e., it re-

uires less message exchanges and power consumption). However,

t only achieves one of the goals of the design of a virtual mobile

ode i.e., the movement of the virtual mobile node can be prede-

ned. In fact, the host of the agent is a single point of failure and

herefore a virtual mobile node implemented by the agent-based

lgorithm is not robust. It seems likely that our neighbor detec-

or algorithm can be correctly implemented (with some probabil-

ty and under some conditions) even if it uses the virtual nodes

mplemented by the agent-based algorithm. In this case the basic

dea is that if the average time during which a host remains up

fter each recovery is known, then the agent can change its host

ust before the time when the host is likely to crash. 

.2.2. Optimizing the neighbor detector algorithm 

In addition to the implementation of the virtual nodes, the

eighbor detector algorithm can also be directly optimized in

any ways. Below we discuss some of these methods. 

void unnecessary sharing and distribution of location predictions. In

he current version of the neighbor detector algorithm, when a col-

ect round terminates, each virtual mobile node shares the location

redictions that it has collected with other virtual mobile nodes.

owever, sharing the location predictions may not be always nec-

ssary. In fact, users of mobile devices may remain for long periods
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9 Since a sparse mobile ad hoc network is a specific type of delay tolerant net- 

works (DTNs), in the literature, some of these algorithms are presented as routing 

algorithms for DTNs. 
f time in a subregion depending on their work habits, their move-

ent speed, etc. In this case, the predicted locations of a real node

re all in the same subregion where the real node resides at the

oment of collection. Thus, if at the end of a collect round, for

very virtual node v i , the predicted locations that it has collected

re all in R i (as a reminder, R i denotes the associated subregion

f v i ), then there is no need for virtual nodes to share what they

ave collected. Consequently, in the next distribute round, each vir-

ual node only distributes the predictions that it has collected from

ts associated subregion. In the described example, the unneces-

ary distribution of location predictions is avoided indirectly, i.e.,

y avoiding the unnecessary sharing. However, it seems that the

nnecessary distribution can also be avoided after the sharing. For

nstance, after the sharing, based on the location predictions, each

irtual node v i can identify the real nodes that will be in its as-

ociated subregion during the upcoming distribute round. Thus, if

 i can determine the location predictions which are never used for

eighbor detection by these real nodes, it can avoid distributing

hem. 

efining a time bound for the detection of the past neighbors. In the

efinition of the time-limited completeness property of the neigh-

or detector service (stated in Section 3.1.2 ), for simplicity, we do

ot assume a time bound for the detection of the past neighbors.

his implies that each real node should have an unbounded buffer

o store all the location predictions that it receives from the vir-

ual nodes in the distribute rounds. However, for real deployments,

ased on the application requirements and the availability of the

esources, a time interval down to which the past neighbors can

e detected should be considered. In this way, the location predic-

ions stored by a real node can be erased as soon as they become

oo old to be used for the neighbor detection. 

efining clusters for real nodes. In the current version of the neigh-

or detector algorithm, each real node acts on its own and is re-

ponsible for sending and receiving messages to the virtual nodes.

owever, we can think of real nodes forming clusters such that

ithin each cluster one or more real nodes, called the gateway

odes , are in charge of communicating with the virtual nodes.

ased on how the clusters are defined, the other real nodes can

ommunicate with these gateway nodes using the LocalCast ser-

ice or a traditional MANET routing protocol. It seems that using

lusters can reduce the scan path length of a virtual node (and

onsequently the scan duration or �scan ). In fact, in this case, dur-

ng a scan a virtual node should only be in the transmission range

f the gateway nodes instead of all real nodes. It remains an open

uestion as to whether using clusters can also reduce the number

f message exchange. 

. Related work 

For the related work, we consider three categories of algo-

ithms, which are neighbor detection algorithms , mobility-assisted al-

orithms and virtual mobile node-based algorithms . Note that these

ategories are not disjoint. In particular, all virtual mobile node-

ased algorithms can also be categorized as mobility-assisted al-

orithms and some of them can also be categorized as neighbor

etection algorithms. Our motivation for considering a category for

irtual mobile node-based algorithms is to be able to discuss in

etail how these algorithms use virtual mobile nodes to achieve

heir goals and to compare their approach with the approach used

y our algorithm. 

.1. Neighbor detection algorithms 

In ad hoc networks neighbor detection is usually studied as

 building block for applications such as routing, leader election,
roup management and localization. The majority of the existing

eighbor detection algorithms belong to the hello protocols fam-

ly [1,4,6,17,24,26,28,37,50] . They are based on the basic hello pro-

ocol first described in Open Shortest Path First ( OSPF ) routing pro-

ocol [38] , which works as follows: each node in the network pe-

iodically sends hello messages to announce its presence to close

odes, and maintains a neighbor set. The sending frequency is de-

oted by f hello . If a hello message is not received from a neighbor

or a predefined amount of time, then that neighbor is discarded

rom the neighbor set. Thus, the optimal f hello for this approach

hould be high enough to cause the neighbor set to remain up to

ate but not too high to cause the waste of communication band-

idth and energy [26] . However, finding the optimal f hello is not

bvious and the existing solutions cannot ideally solve this prob-

em. Moreover, contrary to our neighbor detector algorithm, the

ello protocols usually provide only the set of current neighbors

nd they do not satisfy any formal guarantees. 

Although, the hello protocols comprise the majority of the exist-

ng neighbor detection algorithms for ad hoc networks, in the lit-

rature there exist also the schemes that use different approaches

han the hello broadcast for neighbor detection [11,12] . For in-

tance, in [12] Cornejo et al. define a reliable neighbor detection

bstraction that establishes links over which message delivery is

uaranteed. They present two region-based neighbor detection al-

orithms which implement the abstraction with different link es-

ablishment guarantees. The main idea behind the algorithms is

hat a node sends a join message some time after entering a new

egion to establish communication links. It also sends a leave mes-

age some time before leaving a region to inform the other nodes

o that they can tear down their corresponding link with that

ode. Since a node should send a leave message some time be-

ore it actually leaves a region, the algorithm assumes that a node’s

rajectory function is known to that node with enough anticipa-

ion to communicate with other nodes before leaving the region.

he approach applied in [12] for neighbor detection is interesting

ecause it uses a relatively lower number of message broadcast

ompared to the hello protocols . Similar to our work, this approach

lso uses the knowledge of nodes about their future locations for

he neighbor detection. However, contrary to our work, no future

eighbor detection is defined and only the current neighbor detec-

ion is guaranteed. 

The time-limited neighbor detector service implemented in this

aper is first introduced in our previous work in [5] . To the best of

ur knowledge, it is the only neighbor detector service for ad hoc

etworks that detects not only the current neighbors of a node but

lso its future neighbors. In addition to the definition of the neigh-

or detector, in [5] we also proposed a simple but limited algo-

ithm that implements the neighbor detector using a single virtual

obile node. In Section 6.3 , which is dedicated to the virtual mo-

ile node-based algorithms, we will describe this simple algorithm

n more detail and compare it with the algorithm introduced in the

resent work. 

.2. Mobility-assisted algorithms 

In the literature of mobile ad hoc networks, node mobil-

ty is leveraged for different purposes e.g., to improve secu-

ity [8] , increase network capacity [19] or locating nodes [20] .

n particular, there exist various algorithms that take advantage

f mobility for routing purposes in sparse mobile ad hoc net-

orks [2,9,18,23,31,32,41–43,46,48,53–56] . 9 In a sparse mobile ad

oc network, node deployment is sparse. Therefore, nodes may
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not be in the transmission range of each other for long periods

of time. Several routing algorithms for this type of networks use

the store-carry-forward model, according to which the nodes in the

network forward a message from the source node to the destina-

tion node in one or many hopes, such that, once a relay node re-

ceives the message, it stores and carries the message until it has

a chance to forward it to another node [53] . The famous exam-

ples of the algorithms that use the store-carry-forward model are

the epidemic routing algorithms [18,23,32,42,43,46,48] which ex-

ploit the inherent node mobility [56] . In [22] , Hatzis et al. intro-

duce the concept of compulsory protocols, which require a sub-

set of the mobile nodes to move in a pre-specified manner. The

motivation behind the design of compulsory protocols is that if

mobile nodes moved in a programmable way, algorithms could

take advantage of motion, performing even more efficiently than in

static networks [14] . In [22] , Hatzis et al. present an efficient com-

pulsory protocol for leader election. Furthermore, Chatzigiannakis

et al. [9] and Li et al. [31] propose simple and efficient routing al-

gorithms based on the idea of compulsory protocols. 

Among the mobility-assisted algorithms that do not use virtual

mobile nodes, the closest algorithms to our work are the message

ferrying (MF) algorithms [2,53–55] . MF algorithms are the routing

algorithms for sparse ad hoc networks, which use moving entities

called message ferries (or ferries for short) for carrying messages be-

tween nodes. Ferries travel through the network and communicate

with nodes using a single-hop broadcast scheme. Similar to a vir-

tual mobile node’s path, the route through which a ferry moves is

programmed and usually known to all nodes in the network. How-

ever, contrary to a virtual mobile node, a ferry is, in fact, a real

node which has no (or less) resource constraints (in terms of en-

ergy consumption or buffer size) compared to other nodes in the

network. Ferries are used in different applications. For instance, in

a disaster scene where the existing infrastructure is unusable, air-

planes or vehicles can be used as ferries to transport data between

users in separated areas [55] . 10 The MF algorithms usually aim at

satisfying some guarantees in terms of network throughput, aver-

age message delay or energy consumption. Therefore, the routes

of the ferries should be designed so that such guarantees can be

achieved. In [53,55] the ferry route design problem is considered

for a network where regular nodes 11 are stationary and their loca-

tions are a priori known. Thus, the ferry route design problem is

basically considered as a variation of the traveling salesman prob-

lem (TSP) and is solved by applying some TSP algorithms on the

locations of the regular nodes. Obviously, the solutions proposed

in [53,55] are limited since they can only be applied to stationary

networks where the locations of regular nodes are a priori known.

In [54] , a network composed of mobile regular nodes is considered.

Since regular nodes are mobile, to ensure the meeting between the

ferries and the regular nodes, two approaches are proposed where

each approach is presented by one MF algorithm. In the Node-

Initiated MF (NIMF) algorithm, ferries move around the deployed

area according to routes known to the regular nodes. When a reg-

ular node has a message to send or receive, it moves close to a

ferry and communicates with it. The problem with this approach is

that it disrupts the normal movement of the regular nodes for the

purpose of communication with the ferries. In the Ferry-Initiated

MF (FIMF) algorithm, the ferries move to meet the regular nodes

at their requests. Thus, when a regular node wants to send a mes-

sage to another regular node or receive a message, it generates a
10 In the literature, there exists also the notion of Data MULEs (Mobile Ubiquitous 

LAN Extensions) [41] . Message ferries and Data MULEs are somehow synonymous. 

The main difference between them is that the movement of Data MULEs is ran- 

dom [2,43,54] . 
11 In the MF algorithms, the nodes in the network which are not ferries are re- 

ferred to as regular nodes . We also adopt this term while discussing MF algorithms. 
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ervice request (which is a control message encapsulating the loca-

ion of the regular node) and transmits it to a chosen ferry using a

ong-range radio. Upon the reception of a service request , the ferry

ill adjust its trajectory to meet up with the regular node and ex-

hange messages using short range radios. The main problem with

his approach is that it requires the use of long-range radio which

ight not always be feasible or desirable. In [2] , a ferry route de-

ign algorithm called Optimized Way Points (OPWP) is proposed

or a network where regular nodes are mobile. OPWP only guar-

ntees probabilistic meetings between the ferries and the regular

odes, that is, it ensures that every time a ferry traverses its route,

t meets every regular node with a certain minimum probability. A

erry route found by OPWP comprises an ordered set of way-points

nd waiting times at these way-points that are chosen carefully

ased on the mobility model of the regular nodes. More precisely,

o choose the set of way-points for a ferry route, OPWP requires

hat for every regular node p i and every way-point s in the deploy-

ent area, the probability of the meeting between the ferry and p i 
hen the ferry moves as well as the probability of the meeting

etween the ferry and p i when the ferry waits at s to be known.

hus, the main problem with the approach used by OPWP is that

o find the routes of the ferries, not only the mobility model of

he regular nodes should be a priori known but also the mobility

odel should be such that the above mentioned probabilities can

e determined from it. 

As we have described, the MF algorithms require some nodes

n the network (basically the ferries) to move in a controlled, pro-

rammed way (note that in some MF algorithms such as in the

IMF algorithm, not only the ferries but also the regular nodes

hould adjust their movement for the communication purposes)

hereas our work is based on virtual mobile nodes which only use

he real nodes to emulate the virtual mobile node and does not re-

uire them to move in a programmed way. Not requiring the real

odes to move in a programmed way is preferable especially in the

BM applications (i.e., the target applications for our work) where

he wireless devices are used by ordinary people who are not

menable to following instructions as to where their devices may

ravel. Moreover, as described above, the approaches proposed in

he literature to compute the ferry routes, are either limited (e.g.,

equire stationary regular nodes with known locations) or compli-

ated (e.g., require sending control messages using long range ra-

io or require some probabilities to be determined from the mo-

ility model of the regular nodes). On the contrary, our approach

or finding the scan path of virtual mobile nodes does not require

 stationary network and is simple, since it only requires finding

he covering centers using a hexagonal tessellation algorithm. 

In the next section we discuss a special type of mobility-

ssisted algorithms, i.e., the virtual mobile node-based algorithms

nd compare them to our algorithm. 

.3. Virtual mobile node-based algorithms 

The idea of using virtual mobile nodes to facilitate the design

f algorithms for mobile ad hoc networks was first introduced

y Dolev et al. in [14] . The virtual mobile node abstraction de-

ign was inspired by idea of the compulsory protocols of Hatzis

t al. [22] (we have already discussed the compulsory protocols in

ection 6.2 ). Note however that, contrary to the compulsory pro-

ocols, the virtual mobile node-based algorithms do not require a

et of real nodes to move in a programmable way but they rather

equire the virtual mobile nodes, emulated by the real nodes, to

ove in a programmable way. 

In [15] , several basic algorithms that use virtual mobile nodes

o solve various problems are briefly presented. These algorithms

ddress the problems such as routing, collecting and evaluating

ata, group communication and atomic memory in mobile ad hoc
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etworks. Similar to the present work, some of these algorithms

se several virtual nodes which regularly exchange information be-

ween each other. However, contrary to the present work, no ex-

licit properties for the trajectory functions of the virtual nodes

re defined to guarantee the meeting and communication between

hem. 

In our previous work [5] , we presented an algorithm that im-

lements the time-limited neighbor detector service with the same

uarantees defined in the present work. Similar to the present

ork, real nodes have access to a mobility predictor service and

an predict their locations up to �predict in the future. However,

he algorithm uses only a single virtual mobile node that travels

hrough the network, collects location predictions and distributes

eighbor detection-related information. Thus, in order to stay cor-

ect, the algorithm requires greater �predict values as the map size

rows. Another drawback of the algorithm presented in [5] is that

t does not tolerate the failure of the virtual mobile node. These

rawbacks are the main motivations for the present work. Finally,

ote that the present work is an extension of the work published

s a short conference paper in [7] . 

. Conclusion 

We have introduced an algorithm that implements the time-

imited neighbor detector service for MANETs using n = 2 k virtual

obile nodes where k is a non-negative integer. We proved that

ur algorithm is correct under certain conditions. In particular, we

howed that our algorithm is correct for a category of executions,

alled nice executions , which basically correspond to the executions

f the algorithm in periodically well-populated regions. We also

efined the minimum value of �predict for which the algorithm is

orrect in different cases of nice executions. 

Compared to the previously proposed algorithm [5] , which uses

 single virtual mobile node, our algorithm has two advantages:

1) it tolerates the failure of one to all virtual mobile nodes; (2)

s the number of virtual mobile nodes grows, it remains correct

ith smaller values of �predict . This feature makes the real-world

eployment of the neighbor detector easier since with the exist-

ng prediction methods, location predictions usually tend to be-

ome less accurate as �predict increases. We showed that the cost

f our algorithm (in terms of communication) scales linearly with

he number of virtual mobile nodes. We also proposed a set of op-

imizations which can be used for the real-world deployment of

ur algorithm. 

To the best of our knowledge, this is the first work that uses

ultiple virtual mobile nodes to implement a neighbor detector

ervice in MANETs. Another novelty of our work, is the definition

f explicit properties for the scan paths of virtual nodes and then

resenting a way to compute the scan paths. As shown in the pa-

er, the scan paths are defined so that they guarantee a full col-

ection and distribution of predictions in each subregion as well as

he coordination between the virtual mobile nodes. Thus, we be-

ieve that the approach used in this paper to define the scan paths

an be used for implementing other virtual mobile node-based al-

orithms such as virtual mobile node-based routing algorithms. 

As a potential future work, we consider a real-world deploy-

ent of our neighbor detector algorithm. In fact, we are currently

eveloping, ManetLab , a modular and configurable software frame-

ork for creating and running testbeds to evaluate MANET-specific

rotocols [49] . Once the neighbor detector algorithm is deployed

n ManetLab, we can perform the following: 

• compare our theoretical results with the results obtained from

the real deployment. In fact, as shown by a quantitative anal-

ysis in the paper, when n (i.e., the number of virtual nodes)

grows, the neighbor detector algorithm requires smaller values
of �predict to correctly implement the neighbor detector and at

the same time its communication cost grows as O(n ) . Thus, it

would be interesting to validate our theoretical results using

the real deployment and determine up to which value of n the

utility of the algorithm outweighs its cost; 

• deploy some other famous neighbor detection algorithms (men-

tioned in Section 6.1 ) and compare their performance with the

algorithm in the present work. Note that since other neigh-

bor detection algorithms (except the algorithm in our previous

work [5] ) only detect current neighbors the comparison will

only be limited to current neighbor detection; 

• apply the optimizations proposed in Section 5.2 on the deploy-

ment and determine the extent to which these optimizations

can be applied and whether they can effectively improve the

performance of the algorithm. 

The neighbor detector algorithm presented in this paper is de-

igned for periodically well-populated regions. Thus, another is-

ue which can be investigated as future work is to implement the

eighbor detector for less populated regions. In order to do so, we

an think of using another type of virtual nodes called autonomous

irtual mobile nodes [16] . This type of virtual nodes can move au-

onomously, choosing to change their path based on their own

tate and inputs from the environment. For instance, if the area

n their paths appears deserted, they can change their path to the

ore populated areas. 
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ppendix A. Finding an upper bound for the scan path length 

f a virtual mobile node 

According to Eq. (1) of Section 4.3 , the scan path length of a

irtual node v i or L scan −path (v i ) can be calculated as: 

 scan −path (v i ) = ( NOC (R i ) − 1) ×
√ 

3 r com 

here NOC ( R i ) denotes the number of covering centers for sub-

egion R i . We can find an upper bound on NOC ( R i ) by counting

he number of lattice points that are associated to the tessella-

ion of R i . In mathematics and group theory, a two dimensional

attice is a discrete subgroup of R 

2 which spans the vector space

f R 

2 . In a regular hexagonal tessellation, the centers and the ver-

ices of the hexagons form a two dimensional lattice called the

exagonal lattice . Let NOL disk denote the number of hexagonal lat-

ice points within a disk centered at the origin of the plane (which

s l map−center in our case). Then, NOL disk can be calculated using Eq.

A.1) where r is the radius of the disk and d is the distance be-

ween the closest lattice point pairs [30] . 

OL disk (r, d) = 

� r 

d 
√ 

3 
� ∑ 

x = −� r 

d 
√ 

3 
� 

( 

2 

⌊ √ 

r 2 

d 2 
− 3 x 2 

⌋ 

+ 1 

) 

+ 

� r 

d 
√ 

3 
+ 1 2 �− 1 

2 ∑ 

x = 1 2 −� r 

d 
√ 

3 
+ 1 2 � 

2 

⌊ √ 

r 2 

d 2 
− 3 x 2 + 

1 

2 

⌋ 

(A.1) 

Obviously, a covering center is also a hexagonal lattice point.

hereby, if we want to calculate an upper bound for the number

f covering centers of R i using the number of the lattice points,

e should take into account the limit cases i.e., where a covering

enter is at the boundary or out of R i . Since the circumradius of a

exagon is r com 

, we know that a covering center cannot be located

t a distance greater than r com 

from a boundary of R i . Thus, we cal-

ulate the number of lattice points for an extended region R ′ 
i 

made
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from R i . The extension is performed by increasing the arc of R i by

2 r com 

(i.e., adding r com 

at each end of the arc) and by increasing the

radius of R i by r com 

. Therefore, R ′ 
i 

has a radius of length r map + r com 

and a central angle θ ′ = 

2 r com 
r map + r com 

+ 

2 π
n . Let NOL region (R ′ 

i 
) denote the

number of lattice points in R ′ 
i 
, we have: 

NOL region (R 

′ 
i ) = NOL disk (r map + r com 

, r com 

) × θ ′ 
2 π

= NOL disk (r map + r com 

, r com 

) 

×
(

2 r com 

r map + r com 

+ 

2 π

n 

)
× 1 

2 π

(A.2)

As described before, NOC (R i ) < NOL region (R ′ 
i 
) , thus, considering

this fact and Eq. (1) of Section 4.3 and Eq. (A.2 ), we have: 

L scan −path (v i ) < c 1 + 

c 2 
n 

where c 1 and c 2 are two constants defined below. 

c 1 = 

√ 

3 r com 

×
(

r com 

× NOL disk (r map + r com 

, r com 

) 

π × (r map + r com 

) 
− 1 

)
(A.3)

c 2 = 

√ 

3 r com 

× NOL disk (r map + r com 

, r com 

) (A.4)
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