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Abstract

Location-based social networks (LBSNs) such as Foursquare and Facebook enable

users to share with each other, their (geographical) locations together with the

semantic information associated with their locations. The semantic information

captures the type of a location and is usually represented by a semantic tag like

“restaurant”, “museum”, “school”, etc. Semantic tag sharing increases the threat

to users’ location privacy (which is already at risk because of location sharing) and

it also puts users’ semantic location privacy at risk. The existing solution to protect

the location privacy and the semantic location privacy of users in such LBSNs is

to obfuscate the location and the semantic tag independently of each other in a so

called disjoint obfuscation approach. Thus, in this approach, the semantic tag is

obfuscated i.e., replaced by a more general tag. Also, the location is obfuscated

i.e., replaced by a generalized area (called the cloaking area) made of the actual

location and some of its nearby locations. However, since in this approach the

location obfuscation is performed in a semantic-oblivious manner, an adversary can

still increase his chance to infer the actual location and the actual semantic tag by

filtering out the locations in the cloaking area that are not semantically compatible

with the obfuscated semantic tag. In this work, we address this issue by proposing

a joint obfuscation approach in which the location obfuscation is performed based

on the result of the semantic tag obfuscation. We also provide a formal framework

for evaluation and comparison of our joint approach with the disjoint approach. By

running an experimental evaluation on a dataset of real-world user traces collected

from six different cities, we show that in almost all cases (i.e., in different cities and

with different obfuscation parameters), the joint approach outperforms the disjoint

approach in terms of location privacy protection and the semantic location privacy

protection. Based on the evaluation results, we also discuss how different obfuscation

parameters and the choice of the city can affect the performance of the obfuscation

approaches. In particular, we show how changing these parameters can improve the

performance of the joint approach.
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Figure 1: A check-in to a burger joint

called “Whitmans” on Foursquare.

The important information (i.e., the loca-

tion and the semantic tag of the venue) is

highlighted by the red bounding boxes.
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Figure 2: Example of a semantic tag

hierarchical tree. Each node of the tree

is a semantic tag and its parent is a more

generalized semantic tag. The root of the

tree is the most generalized semantic tag

“venue”. Note that because of the lack of

space, the figure displays only some nodes

of the tree. The rest is omitted using the

three dots.

1. Introduction

In recent years, the combination of location-based services (LBSs) with online

social networks has led to the emergence of location-based social networks (LBSNs)

such as Foursquare [19] and Facebook [18]. In these networks, users can share with

each other, their (geographical) locations together with the semantic information

associated with their locations. For instance, by checking-in to venue “Whitmans”

on Foursquare, a user implicitly accepts to share with her friends, the address

of the venue together with its type (category), which is represented in the form

of a semantic tag “burger joint” (See Fig. 1). A venue’s semantic tag usually

belongs to a predefined set of tags, where the set of tags form a hierarchical tree

in which the “burger joint” tag could be a descendant of the “restaurant” tag and

the “restaurant” tag could be a descendant of the “food” tag, and so forth [7, 1]

(See Fig. 2).

It is known that by disclosing their locations in LBSNs (and in LBSs, in gen-

eral), users put their location privacy at risk. In fact, an adversary (e.g., a curious

service provider or a user of the social network who observes the disclosed locations)

can use a collection of users’ disclosed locations to re-identify their pseudonymous

location traces or to infer their locations at given time instants [53, 54, 50]. As

shown in [1], revealing semantic tags together with locations, creates a still more

powerful threat to the users’ location privacy. Intuitively, this is because the mo-
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Figure 3: Toy Examples of the obfuscation approaches. In both subfigures, a user Alice

wants to check-in to venue “Super Duper Burger” on a privacy-aware LBSN. (a) The disjoint

semantic tag-location obfuscation approach replaces her location’s semantic tag (i.e., “burger

joint”) by the generalized tag “restaurant” and her location (i.e., region 1) by the cloaking area

{region 1, region 2}. (b) The joint semantic tag-location obfuscation approach replaces her

location’s semantic tag (i.e., “burger joint”) by the generalized tag “restaurant” and her location

(i.e., region 1) by the cloaking area {region 1, region 3}, which has the maximum number of

semantically compatible regions (locations) with the “restaurant” tag.

bility of users have some regular semantic patterns (e.g., people usually go to the

movies after dining in a restaurant), which can be learned and exploited to better

track their locations [7, 1]. Moreover, the semantic tags of users’ locations de-

scribe users’ semantic locations (i.e., the type of their locations). Accordingly, by

revealing the semantic tags of their locations, users also put their semantic location

privacy at risk [1, 48].

One way to protect the privacy of users is to build privacy-aware LBSNs in

which users only share obfuscated versions of their locations and semantic tags.

Thus, when a user checks-in to a venue on a privacy-aware LBSN, the venue’s

name, its exact location and its semantic tag are not disclosed to anyone. Instead,

an obfuscated version of the location and an obfuscated version of the semantic

tag are sent to the service provider and then shared with the user’s friends on

the LBSN. The existing solution in the literature to build privacy-aware LBSNs

consists of obfuscating the location and the semantic tag independently of each

other in a so called disjoint semantic tag-location obfuscation approach [1]. Fig. 3.a

illustrates a toy example of this approach, where a geographical area is partitioned

into four square regions (locations) and each region is identified by a number. Let

us assume that a user Alice wants to check-in to venue “Super Duper Burger” on a
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privacy-aware LBSN. Thus, in the semantic tag obfuscation process, her location’s

semantic tag (i.e., “burger joint”) is replaced by a more general tag “restaurant”.

Also, in the location obfuscation process, her location (i.e., region 1) is replaced

by a generalized area (also called a cloaking area) made of regions 1 and 2.1,2 The

problem with this approach is that an adversary (e.g., a curious service provider)

who knows the semantic tags of the venues in the map can easily filter out region

2 from the cloaking area and infers that Alice is located in region 1. The reason is

that region 2 is not semantically compatible with the “restaurant” tag i.e., it has no

venue whose semantic tag is equal to the “restaurant” tag or is a descendant of the

“restaurant” tag in the tag hierarchy. Moreover, since “Super Duper Burger” is

the only venue in region 1 whose semantic tag is a descendant of the “restaurant”

tag, the adversary infers that the semantic tag of Alice’s location is “burger joint”.

In this work, we introduce a joint semantic tag-location obfuscation approach

for building privacy-aware LBSNs. This approach aims to overcome the drawbacks

of the disjoint approach by performing the location obfuscation based on the re-

sult of the semantic tag obfuscation. More precisely, in the location obfuscation

process, the cloaking area is defined so that it has the maximum number of se-

mantically compatible regions with the obfuscated semantic tag among the existing

potential cloaking areas. Fig. 3.b illustrates a toy example of this approach. Simi-

lar to the toy example of Fig. 3.a, in this example a user Alice wants to check-in to

venue “Super Duper Burger” on a privacy-aware LBSN. Thus, in the semantic tag

obfuscation process, her location’s semantic tag (i.e., “burger joint”) is replaced

by a more general tag “restaurant”. However, in the location obfuscation process,

her location (i.e., region 1) is replaced by a cloaking area made of regions 1 and 3.

The advantage of merging region 1 with region 3 instead of merging region 1 with

region 2, is that region 3 is semantically compatible with the “restaurant” tag since

it has two venues (i.e, “Joe’s Pizzeria” and “Haru Noodle House”) whose semantic

tags (i.e., “pizza place” and “noodle house”) are descendants of the “restaurant”

tag in the tag hierarchy, respectively. Hence, the adversary cannot filter out the

region 3 by knowing the “restaurant” tag. Thus, the resulting cloaking area has

two semantically compatible regions with the “restaurant” tag, which is the max-

imum number of semantically compatible regions that can be achieved for the

“restaurant” tag and the cloaking area size of two regions.

1There exist different types of obfuscation in the literature. For simplicity, in this work we

consider only obfuscation by generalization, both for locations and semantic tags.
2The location obfuscation and the semantic tag obfuscation can reduce user’s perceived quality

of service (also known as utility) [7]. However, if the utility loss caused by obfuscation can be

predicted using utility models, then the obfuscation levels can be adjusted to best match the

user’s preferences in terms of utility and privacy [7]. We discuss this in more detail in Section 6.
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Contributions. We introduce a joint semantic tag-location obfuscation approach

for protecting the location privacy and the semantic location privacy of users in

LBSNs (and in LBSs, in general). Our approach aims to overcome the drawbacks

of the disjoint approach by performing the location obfuscation based on the result

of the semantic tag obfuscation. Thereby, in our approach, the resulting cloaking

area is defined so that it has the maximum number of semantically compatible

regions with the obfuscated semantic tag among the existing potential cloaking

areas. We also provide a formal framework that can be used for evaluation and

comparison of our approach with the disjoint approach. More precisely, we con-

sider a privacy protection mechanism (PPM) that can be defined to use one of the

joint or the disjoint obfuscation approaches. We formalize the both approaches

using probability distribution functions. We consider an adversary model and we

formalize the adversary’s attacks, where the attacks include the semantic tag in-

ference attack and the location inference attack. We present an implementation

of the attacks based on dynamic bayesian network (DBN ) models. We also pro-

vide the metrics that are used to quantify the location privacy and the semantic

location privacy of users who are subjected to the attacks. Using a dataset of

real-world user mobility traces collected from six different cities, we perform an

experimental evaluation for comparison of the joint and the disjoint approaches

in terms of location privacy and semantic location privacy. In particular, we in-

troduce algorithms that implement the obfuscation approaches and which can be

used in the evaluation. We discuss the evaluation results for different values of the

obfuscation parameters and for different cities. The results show that in almost all

cases (i.e., in different cities and with different obfuscation parameters) the joint

approach outperforms the disjoint approach in terms of location privacy protection

as well as the semantic location privacy protection. We also study how different

parameters (i.e., the obfuscation parameters and the distribution of the number of

venues per region in different cities) can affect the performance of the obfuscation

approaches. In particular, we show how changing these parameters can improve

the performance of the joint approach. Finally, we present a discussion regarding

the performance of the both obfuscation approaches in terms of utility.

To the best of our knowledge, this is the first work in which the location ob-

fuscation is performed based on the result of the semantic tag obfuscation. It is

also the first work that uses the concept of semantic compatibility and performs

location generalization (location cloaking) based on it. However, the most impor-

tant contribution of our work is introducing joint obfuscation as a new type of

obfuscation, in which some private attributes of a user are obfuscated based on

the result of the obfuscation of some of her other private attributes. Using the

example of the joint obfuscation approach presented in this paper, we show how
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joint obfuscation can increase privacy for all private attributes that are involved in

the joint obfuscation compared to the disjoint obfuscation where private attributes

are obfuscated independently of each other. Accordingly, our work can be used as

a model for more advanced obfuscation schemes that jointly obfuscate a greater

number of private attributes.

Note that the work presented in this paper is an extension of the primary work

presented as a workshop paper in [9]. In both papers, we introduce a joint seman-

tic tag-location obfuscation approach in which location obfuscation is performed

based on the result of the semantic tag obfuscation. In both papers, we present

a formal framework and an experimental evaluation to compare the performance

of our joint obfuscation approach with the performance of the disjoint obfusca-

tion approach. However, the work presented in the workshop paper is limited in

many ways. The present paper addresses the issues that are not covered by the

workshop paper and contains a significant amount of new material. In summary,

the present paper contains the following additional contributions compared to the

workshop paper3: (1) In the workshop paper, we show that the joint obfuscation

approach outperforms the disjoint obfuscation approach only in terms of location

privacy, whereas in the present paper, we show that the joint obfuscation approach

outperforms the disjoint obfuscation approach both in terms of location privacy

and semantic location privacy. This is an important contribution since it indicates

that the joint obfuscation can increase privacy for all private attributes that are

involved in the joint obfuscation process and not only for some of them. This

also caused a change in the entire content of the present paper compared to the

workshop paper. More specifically, all sections of the present paper (including the

theoretical parts as well as the experimental evaluation) are re-written and ex-

tended to contain information regarding semantic location privacy. For instance,

the adversary model in Section 2.5.2 is extended to perform also an attack against

the semantic location privacy and new metrics related to semantic location privacy

are added in Section 4.2 and Section 5.2. Moreover, new figures and discussions re-

lated to semantic location privacy are added to the experimental evaluation results

in Section 5.2. (2) The present paper contains a new section (i.e. Section 5.2.2)

which discusses the experimental evaluation results for different cities and presents

new figures. In particular, this section studies how the distribution of the number

of venues per region in a city can affect the performance of the obfuscation ap-

proaches in that city. (3) The present paper contains a new section (i.e., Section 6)

which discusses the performance of the joint obfuscation approach in terms of the

3For a more detailed comparison between the present paper and the workshop paper [9], as

well as an exhaustive list of the new material added to the present paper, see Appendix A.
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user’s perceived quality of service (also known as utility) and compares it with the

performance of the disjoint approach. (4) The present paper contains a new section

(i.e., Section 3.2) which discusses the dynamic bayesian network (DBN) inference

algorithms in detail and recommends the inference algorithms that can be used

for the adversary’s attacks based on the available resources. (5) In the present

paper, we added pseudo-codes for the obfuscation algorithms (i.e., Algorithm 1

and Algorithm 2) to Section 5.1.3. We also added an example walkthrough of the

location obfuscation algorithm and its corresponding figure to Section 5.1.3. We

believe that these additions can help the readers to get a better understanding

of how these algorithms work. (6) The related work in Section 7 of the present

paper is extended to include new discussions regarding the interdependent location

privacy, semantic tag labelling and semantic location privacy. We also added some

ideas for future work in Section 8. (7) We improved all sections of the present

paper by better explaining our ideas and by adding more details compared to the

workshop paper. In particular, we added 5 new figures and 2 subfigures, 12 new

footnotes and a table that summarizes the notations used throughout the paper.

Road map. The remainder of the paper is organized as follows. In Section 2,

we describe the system model and introduce some definitions. In particular, we

present a privacy protection mechanism (PPM) that can be defined to use one of

the joint or disjoint obfuscation approaches. We also present the adversary model

and describe the adversary’s knowledge and attacks. In Section 3, we introduce an

implementation of the attacks based on dynamic bayesian networks (DBNs). In

Section 4, we present the privacy metrics that are used to measure the privacy of the

users who are subjected to the attacks. In Section 5, we perform an experimental

evaluation to compare the joint and the disjoint approaches in terms of location

privacy protection and semantic location privacy protection and we discuss the

results. In Section 6, we present a discussion on the performance of the both

obfuscation approaches in terms of utility. In Section 7, we discuss the related

work. Finally, in Section 8, we conclude and discuss the future work. The paper has

also an Appendix A, which provides a detailed discussion regarding the additional

contributions of the present paper compared to the primary work published as a

workshop paper in [9].

2. System Model

In this section, we present the system model. Our model is built upon the

framework proposed by Shokri et al. for quantifying location privacy [53, 54, 50]

and its extension for semantic location privacy by Ağir et al. [1]. Accordingly, the
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notations used in this work are similar to those used in [53, 54, 50, 1]. Table 1

summarizes the main notations used throughout this work.

2.1. Regions and Semantic Tags

We assume that the users move in a geographical area that is partitioned into

a set R of M distinct regions. We use the terms region, geographical location and

location interchangeably. Each region has a unique identifier and contains a set

of venues. A venue is characterized by its type, which is represented in the form

of a semantic tag. The semantic tag of a venue belongs to a set S of all possible

semantic tags. We assume that S can be represented as a tree data structure

where each node is a semantic tag and the parent of a given node is a more general

semantic tag with respect to a specified tag hierarchy.

Below, we present some definitions and notations that capture the semantic

characteristics of venues and regions.

• Let v be a venue in a region in R and s be a semantic tag in S. Then, we say v

is semantically compatible with s, if v’s semantic tag is equal to s or descendant

of s in the semantic tag tree.

• Let r be a region in R and s be a semantic tag in S. Then, NVs(r) denotes the

number of venues in r whose semantic tags are equal to s. Also, NDVs(r) denotes

the number of venues in r whose semantic tags are descendants of s in the

semantic tag tree. Finally, NCVs(r) denotes the number of venues in r that are

semantically compatible with s. Thus, NCVs(r)=NVs(r)+NDVs(r).

• Let r be a region in R and s be a semantic tag in S. Then, we say that

r is semantically compatible with s if r contains at least one venue which is

semantically compatible with s, i.e., NCVs(r) > 0.

2.2. Time

Time is discrete and the set of time instants when the users may be observed

is T = {1, ..., T}. The set T is called the observation interval.

2.3. Users

We assume a set U of N users, where each user has a unique identifier. The

mobility of a user is characterized by her events and her traces. More specifically,

the fact that a user u is at location r with semantic tag s at time t, can be

represented by a tuple < u, r, s, t >. We call this tuple an event. Note that

the semantic tag of location of u at time t refers in fact to the semantic tag of

the location’s venue where u is located at time t. The location trace and the
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Table 1: Summary of Notations

Symbol Meaning

u, U , N A user, Set of users, Number of users (N = |U|).
t, T , T A time instant, Set of time instants, Number of time instants (T = |T |).
r, R, M A location (region), Set of locations, Number of locations (M = |R|).
s, s̃, S A semantic tag, A pseudo-semantic tag, Set of semantic tags that form a semantic tag tree.

r̃, R̃ A pseudo-location, Set of possible pseudo-locations.

NVs(.) Number of venues whose semantic tags are equal to s in a given location.

NDVs(.) Number of venues whose semantic tags are descendants of semantic tag s in a given location.

NCVs(.) Number of semantically compatible venues with semantic tag s in a given location.

NCRs̃(.) Number of semantically compatible locations (regions) with pseudo-semantic tag s̃ in a given

cloaking area.

SumNCVs̃(.) Sum of NCVs̃ values over all locations in a given cloaking area.

MNV The median of the number of venues per region in a given city.

< u, r, s, t > Actual event: user u is at location r with semantic tag s at time t.

< u, r̃, s̃, t > Obfuscated event: indicates that the pseudo-location of user u at time t is r̃ and the pseudo-

semantic tag associated to location of u at time t is s̃.

rtu, stu Location of user u at time t, Semantic tag of location of user u at time t.

Rtu, Stu Random variable associated with location of user u at time t, Random variable associated with

semantic tag of location of user u at time t.

r1:Tu , s1:Tu Location trace of user u: r1:Tu , {r1u, ..., rTu }, Semantic tag trace of user u: s1:Tu , {s1u, ..., sTu }.
R1:T
u , S1:T

u R1:T
u , {R1

u, ..., R
T
u }, S1:T

u , {S1
u, ..., S

T
u }.

r̃tu, s̃tu Pseudo-location of user u at time t, Pseudo-semantic tag of location of user u at time t.

R̃tu, S̃tu Random variable associated with pseudo-location of user u at time t, Random variable associated

with pseudo-semantic tag of location of user u at time t.

r̃1:Tu , s̃1:Tu Obfuscated location trace of user u: r̃1:Tu , {r̃1u, ..., r̃Tu }, Obfuscated semantic tag trace of user u:

s̃1:Tu , {s̃1u, ..., s̃Tu }.
R̃1:T
u , S̃1:T

u R̃1:T
u , {R̃1

u, ..., R̃
T
u }, S̃1:T

u , {S̃1
u, ..., S̃

T
u }.

g, f Location obfuscation function of PPM, Semantic tag obfuscation function of PPM.

dloc (.), dsem (.) A distance function between locations, A distance function between semantic tags.

oloc, osem, λ Location obfuscation level, Semantic tag obfuscation level, Hiding probability.

loc-priv-ratio Ratio of the location privacy mean obtained for the joint approach to the location privacy mean

obtained for the disjoint approach.

sem-priv-ratio Ratio of the semantic location privacy mean obtained for the joint approach to the semantic

location privacy mean obtained for the disjoint approach.
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semantic tag trace of user u can then be obtained based on the set of her events

over the entire observation interval. Thus, the location trace of u is defined as

r1:Tu , {r1u, ..., rTu }, where rtu with t ∈ T , denotes the location of u at time t. We

assume that rtu is an instantiation of random variable Rtu that takes values in R.

Moreover, the semantic tag trace of u is defined as s1:Tu , {s1u, ..., sTu }, where stu
with t ∈ T , denotes the semantic tag of location of u at time t. We assume that

stu is an instantiation of random variable Stu that takes values in S.

2.4. Privacy Protection Mechanism (PPM)

In order to protect their location privacy and their semantic location privacy,

users rely on the privacy-protection mechanism (PPM). This mechanism obfuscates

user’s locations and their corresponding semantic tags before reporting them to

the online service provider. More specifically, the privacy-protection mechanism

(PPM) that we consider in this work transforms each actual event < u, r, s, t > to

an obfuscated event < u, r̃, s̃, t >, where r̃ and s̃ are the obfuscated versions of r

and s, respectively.4

The obfuscation of r is achieved through the location obfuscation process of

the PPM. The resulting pseudo-location r̃ is an instantiation of random variable

R̃tu that takes values in set R̃, where R̃ is the power set of R. We use the terms

pseudo-location and obfuscated location interchangeably. In the literature, there

exist various types of location obfuscation (see Section 7). In this work, we assume

that the PPM performs a type of location obfuscation called location generalization.

The goal of location generalization is to reduce the precision of the location that

is reported to the online service provider. Accordingly, r is merged with its nearby

regions to form an extended region (also called a cloaking area (CA)) that is

represented by r̃. We also assume the existence of a parameter oloc called the

location obfuscation level. In this work, oloc defines the number of regions in r̃.

Thus, formally, r̃ represents a set that is composed of r and the other merged

regions and has a cardinality of oloc.

The obfuscation of s is achieved through the semantic tag obfuscation process

of the PPM. The resulting pseudo-semantic tag s̃ is an instantiation of random

variable S̃tu that takes values in set S. We use the terms pseudo-semantic tag

and obfuscated semantic tag interchangeably. One can consider different types

of semantic tag obfuscation. In this work, we assume that the PPM performs a

type of semantic tag obfuscation called semantic tag generalization, in which s is

replaced by a more general semantic tag in the semantic tag tree. The level of

4For simplicity’s sake, in this work we consider a PPM that only performs location and

semantic tag obfuscation. However, a more advanced PPM can also perform time obfuscation

and user anonymization.

10



generalization is defined by a parameter osem called the semantic tag obfuscation

level. Thus, formally, s̃ is the ancestor of s that is osem level(s) above s in the

semantic tag tree.

Based on what we have described, the location obfuscation and the semantic

tag obfuscation can each be modeled by a probability distribution function. By

applying these functions on a user’s events over time, the PPM creates the ob-

fuscated traces of the user from her actual traces. Thus, the obfuscated location

trace of a user u is defined as r̃1:Tu , {r̃1u, ..., r̃Tu }, where r̃tu with t ∈ T , denotes

the pseudo-location of u at time t and is an instantiation of R̃tu. Moreover, the

obfuscated semantic tag trace of user u is defined as s̃1:Tu , {s̃1u, ..., s̃Tu }, where s̃tu
with t ∈ T , denotes the pseudo-semantic tag of location of u at time t and is an

instantiation of S̃tu.

The definition of the probability distribution functions associated to the ob-

fuscation processes depends on the obfuscation approach used by the PPM. We

discuss this in more detail hereafter.

2.4.1. Obfuscation Approaches

Formally, a PPM is defined as a pair (f , g) where f and g are probability

distribution functions that model the semantic tag obfuscation and the location

obfuscation, respectively. The definition of these functions depends on the obfus-

cation approach used by the PPM. In the following, we introduce two obfuscation

approaches and give the definition of the probability distribution functions for each

approach.5

Let e =< u, r, s, t > and ẽ =< u, r̃, s̃, t > be the actual and the obfuscated

events of user u at time t, respectively. Then, there exist two obfuscation ap-

proaches for transforming e to ẽ:

• Disjoint semantic tag-location obfuscation approach. In this approach,

the location obfuscation and the semantic tag obfuscation are performed inde-

pendently of each other. Thus, the probability distribution functions in this

approach are defined as follows.

fu(s, s̃) = Pr
(
S̃tu = s̃

∣∣ Stu = s
)

(1)

gu(r, r̃) = Pr
(
R̃tu = r̃

∣∣ Rtu = r
)

(2)

5Note that in this work we consider a PPM that does not change its obfuscation approach

over time, i.e., if the PPM is defined to use an obfuscation approach it always uses that approach.

11



where the semantic obfuscation function f maps the semantic tag of location

of u at time t to random variable S̃tu that takes values in S and the location

obfuscation function g maps the location of u at time t to random variable R̃tu
that takes values in R̃.

• Joint semantic tag-location obfuscation approach. In this approach, the

location obfuscation is performed based on the result of the semantic tag ob-

fuscation. Thus, first s̃ is obtained from s by applying the semantic tag ob-

fuscation process. Then, in the location obfuscation process, the merging of r

with nearby locations is performed in a way that the resulting r̃ has the max-

imum number of semantically compatible regions with s̃. Formally this can be

expressed as follows. Let C(r) be the set of potential cloaking areas for region

r and NCRs̃(.) denote the number of regions that are semantically compatible

with s̃ in a given cloaking area. Then, an element r̃ of C(r) has the maximum

number of semantically compatible regions with semantic tag s̃ if NCRs̃(r̃)≥
NCRs̃(ρ̃) for ∀ρ̃ ∈ C(r). As we have already discussed, the knowledge of s̃ can

help the adversary to filter out the regions that are not semantically compatible

with s̃. Thus, by defining r̃ as a cloaking area that has the maximum semanti-

cally compatible regions with s̃, we aim to reduce the negative impact that the

revelation of s̃ can have on users’ location privacy and semantic location privacy.

Based on what we have described, the probability distribution functions in this

approach are defined as follows.

fu(s, s̃) = Pr
(
S̃tu = s̃

∣∣ Stu = s
)

(3)

gu(r, r̃, s̃) = Pr
(
R̃tu = r̃

∣∣ Rtu = r, S̃tu = s̃
)

(4)

where the semantic tag obfuscation function f maps the semantic tag of location

of u at time t to random variable S̃tu that takes values in S and the location

obfuscation function g maps both the location and the pseudo-semantic tag of

location of u at time t to random variable R̃tu that takes values in R̃.

2.5. Adversary

Typically, the adversary is a curious service provider (or an external observer

with the access to the same information), who observes the obfuscated traces of

the users and seeks to infer the locations of users and their corresponding semantic

tags at given time instants. Formally, we model the adversary by his knowledge

and his attacks.
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2.5.1. Knowledge

The adversary has full knowledge of regions (including their venues and their

semantic tags) and the semantic tag tree. He knows which obfuscation approach

is used by the PPM and also knows the semantic tag obfuscation function (f)

and the location obfuscation function (g) of PPM in both obfuscation approaches.

We assume that the adversary performs his attacks a posteriori, meaning that

the adversary has access to the obfuscated traces of the users over the complete

observation interval. In addition, he has access to some of the past semantic

tag traces and past location traces of the users. We refer to this as his prior

information. As we further discuss in Section 3.1.1, the adversary uses the prior

information to build a basic dynamic bayesian network (DBN) for each user, where

the basic DBN of a user models her mobility.

2.5.2. Attacks

The adversary performs the two following attacks, where each attack is defined

as a statistical inference problem. We present an implementation of these attacks

in Section 3.

• Location-Inference Attack. In this attack, the goal of the adversary is to

find the location of a user u at time t, given the obfuscated location trace and

the obfuscated semantic tag trace of u. The attack can be formalized as finding

the following posterior probability distribution over set R of regions:

Pr
(
Rtu = r

∣∣ r̃1:Tu , s̃1:Tu
)

(5)

• Semantic tag-Inference Attack. In this attack, the goal of the adversary

is to find the semantic tag associated with the location of a user u at time t,

given the obfuscated location trace and the obfuscated semantic tag trace of

u. The attack can be formalized as finding the following posterior probability

distribution over set S of semantic tags:

Pr
(
Stu = s

∣∣ r̃1:Tu , s̃1:Tu
)

(6)

3. Implementation of the Attacks

The adversary can use different methods to implement his attacks. In this

work, we assume an implementation which is based on dynamic bayesian networks

(DBNs). More precisely, we assume that to implement the attacks, the adversary

first builds a dynamic bayesian network (DBN ) model for each user based on his
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knowledge. Roughly speaking, the DBN model for a user encodes the probabilis-

tic dependencies between the random variables involved in the inference attacks

against that user. Once a DBN is built for a user, the adversary can perform his

attacks against the user by applying the existing DBN inference algorithms. In the

following, we first discuss the DBN models. We then discuss the DBN inference

algorithms that can be used by the adversary.

3.1. The Dynamic Bayesian Network (DBN) Models

Based on his knowledge, the adversary builds a dynamic bayesian network

(DBN ) model for each user. A DBN is a probabilistic graphical model. It belongs

to a wider class of probabilistic graphical models known as bayesian networks

(BNs). In fact, a DBN is a BN which is used to model time series, sequential

data [42, 29].

The DBN model of a user u built by the adversary, presents a joint distri-

bution over random variables R1:T
u , S1:T

u , R̃1:T
u , S̃1:T

u , where R1:T
u , {R1

u, ..., R
T
u },

S1:T
u , {S1

u, ..., S
T
u }, R̃1:T

u , {R̃1
u, ..., R̃

T
u } and S̃1:T

u , {S̃1
u, ..., S̃

T
u }. These random

variables can be divided into two categories: (1) Observed variables. These are

the variables that are directly observed and whose values are known by the ad-

versary. They include R̃1:T
u and S̃1:T

u ; (2) Unobserved variables (also called hidden

variables). These are the variables that are not directly observed and whose values

are supposed to be inferred from the observed variables. They include R1:T
u and

S1:T
u . The graphical structure of the DBN specifies all probabilistic dependencies

between the hidden variables, between the hidden and the observed variables and

between the observed variables.6

The probabilistic dependencies between the hidden and the observed variables

as well as between the observed variables themselves, depend on the obfuscation

approach used by the PPM. Accordingly, the DBN of a user in the case where the

disjoint obfuscation approach is used differs from her DBN in the case where the

joint obfuscation approach is used. However, in both cases the probabilistic de-

pendencies between the hidden variables remain the same. Thus, in the following

we first present a basic DBN for user u that encodes only the probabilistic depen-

dencies between the hidden variables. Then, we present the DBNs of u for the

6Note that the adversary can as well use a hidden Markov model (HMM ) to model the

data. In fact, DBNs generalize HMMs. The main difference between DBNs and HMMs is that

in DBNs the hidden state can be represented by any number of random variables whereas in

HMMs it can only be represented by one random variable. This means that in a HMM model,

the adversary needs to represent the couple (location, location’s semantic tag) by one random

variable. However, as discussed in [42, 39, 1], this simplification makes the inferences more

complex and less efficient.
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(b) DBN for the Disjoint Approach
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(c) DBN for the Joint Approach
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(a) Basic DBN

Figure 4: The Dynamic Bayesian Network (DBN) Models.

disjoint and the joint obfuscation cases. These DBN models are made by adding

the corresponding observed variables of each case to the basic DBN.

3.1.1. The Basic DBN

This model encodes the probabilistic dependencies between the hidden vari-

ables associated to user u, namely R1:T
u , S1:T

u (see Fig. 4.a). Since these random

variables characterize the mobility of user u, we can say that the basic DBN mod-

els the mobility of u. The adversary builds this model based on the following

assumption on user mobility: to move to the next location, a user first decides on

the type (i.e., semantic tag) of the next location based on the type (i.e., seman-

tic tag) of her current location. Once the next location type is decided, the user

can choose her next (geographical) location based on her current (geographical)

location and the next location type. For instance, a user is in a restaurant and

decides to go to the movies, as she usually does after going to a restaurant. Thus,

considering her current geographical location, she chooses the movie theater that

is most convenient to her (e.g., the closest movie theater to the restaurant) [1].

Let us take a closer look at the model. Since a DBN is a type of bayesian

network (BN), the model exhibits the general properties of BNs. More precisely,

it is a directed acyclic graph in which nodes represent random variables and the

edges model conditional dependencies between variables. In addition, each node
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has a conditional probability distribution (CPD) associated to it, which is the

CPD of the variable represented by the node, given the parent variables of the

node (by parent variables of a node, we mean the variables that are represented

by the parent nodes of that node in the graph). For instance, in each time slice

t of Fig. 4.a, to represent the fact that Stu depends on St−1u , an edge connects

the corresponding nodes and the associated CPD is Pr
(
Stu

∣∣ St−1u

)
. Moreover,

to represent the fact that Rtu depends on Stu and Rt−1u , two edges connect the

corresponding nodes and the associated CPD is Pr
(
Rtu

∣∣ Stu, Rt−1u

)
. The model

has also some properties that are specific to DBNs. Firstly, it has a structure

which is repeated over time. Secondly, the model is first order Markovian, i.e., the

random variables in each time slice t are independent of all random variables from

time slices 1 to t − 2, given the random variables in time slice t − 1. Finally, the

model is time-invariant (also called stationary or homogenous), i.e., the CPDs of

the model do not change as a function of time. As a consequence of the Markov

and the time-invariance properties of the model, R1:T
u and S1:T

u each form a time-

invariant first order Markov chain.

Parameters. The model is fully specified by the following probability distribu-

tions.

• The transition distributions: Pr
(
St
u

∣∣ St−1
u

)
and Pr

(
Rt

u

∣∣ St
u, R

t−1
u

)
. These

are the CPDs that define the transition between any two consecutive time slices

t − 1 and t in the model. According to [1], the distribution Pr
(
Rtu

∣∣ Stu, Rt−1u

)

can be computed as follows:

Pr
(
Rtu = r

∣∣ Stu = s,Rt−1u = r′
)

=





0, if NVs(r) = 0

α
Pr
(
Rtu = r

∣∣ Rt−1u = r′
)

∑
ρ∈E

Pr
(
Rtu = ρ

∣∣ Rt−1u = r′
) otherwise

+(1− α) · Pr
(
Rtu = r

∣∣ Stu = s
)
,

(7)

where E = {ρ ∈ R : NVs(ρ) > 0} and α is a real-valued parameter that is used

to set the weight of each term in the equation. The distributions Pr
(
Stu
∣∣ St−1u

)

and Pr
(
Rtu
∣∣ Rt−1u

)
can be learned from the prior traces by applying maximum

likelihood estimation (if the traces are complete) or by using algorithms such as

Gibbs sampling (if the traces have missing locations or if they are noisy) [53,

50, 8]. The distribution Pr
(
Rtu

∣∣ Stu
)

can also be learned from the prior traces.

More precisely, Pr
(
Rtu = r

∣∣ Stu = s
)

can be estimated by counting in the user’s

prior traces, the number of visits to a region r given the semantic tag s [1]. Note
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that in the experimental evaluation in [1], Ağir et al. set α = 0.5 to accord the

same importance to both terms of the equation. In this paper, we follow the

same convention and set α = 0.5 for the experimental evaluation.

• The initial state distributions: Pr
(
R1

u

∣∣ S1
u

)
and Pr

(
S1
u). These are the

distributions associated to the nodes of the first time slice of the model. For the

estimation of Pr
(
R1
u

∣∣ S1
u

)
, we refer the reader to the previous point, where we

discuss the estimation of Pr
(
Rtu
∣∣ Stu

)
from the prior traces (recall that the model

is time-invariant). Moreover, we assume that Pr
(
S1
u) is equal to the stationary

distribution of the Markov chain S1:T
u . Accordingly, it can be found based on

Pr
(
Stu
∣∣ St−1u

)
, which is the transition distribution of the chain. We refer the

reader to the previous point where we discuss the estimation of Pr
(
Stu
∣∣ St−1u

)

from the prior traces.

3.1.2. The DBN for the Disjoint Obfuscation Case

This is the DBN built for user u in the case where the PPM uses the disjoint

obfuscation approach. It is made by adding the observed variables R̃1:T
u and S̃1:T

u to

the basic DBN, where the observed variables correspond to the disjoint obfuscation

case (See Fig. 4.b where observed variables are indicated in gray).

Parameters. The model is fully specified by the parameters of the basic DBN

plus the following CPDs.

• The observation distributions: Pr
(
S̃t
u

∣∣ St
u

)
and Pr

(
R̃t

u

∣∣ Rt
u

)
. These

are the CPDs that define the probabilistic dependencies between the hidden

and the observed variables in any time slice t in the model. These CPDs are in

fact the obfuscation functions of the PPM in the disjoint obfuscation approach

(see Eqs. 1 and 2), and hence known by the adversary.

3.1.3. The DBN for the Joint Obfuscation Case

This is the DBN built for user u in the case where the PPM uses the joint

obfuscation approach. It is made by adding the observed variables R̃1:T
u and S̃1:T

u

to the basic DBN, where the observed variables correspond to the joint obfuscation

case (See Fig. 4.c where observed variables are indicated in gray). In particular,

to represent the fact that in the joint obfuscation case R̃tu depends also on S̃tu, an

edge connects the corresponding nodes in each time slice t of the model.

Parameters. The model is fully specified by the parameters of the basic DBN

plus the following CPDs.
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• The observation distributions: Pr
(
S̃t
u

∣∣ St
u

)
and Pr

(
R̃t

u

∣∣ Rt
u, S̃

t
u

)
. These

are the CPDs that define the probabilistic dependencies between the hidden and

the observed variables in any time slice t in the model. These CPDs are in fact

the obfuscation functions of the PPM in the joint obfuscation approach (see

Eqs. 3 and 4), and hence known by the adversary.

3.2. The DBN Inference Algorithms

The adversary performs his attacks against a user by applying an existing

bayesian network inference algorithm to the DBN of that user. One of the widely-

used inference algorithms for bayesian networks is the belief propagation (BP)

algorithm [45]. The belief propagation (BP) algorithm is an iterative message

passing algorithm. Roughly speaking, this means that at each iteration, nodes

perform a set of local computations and then relay the results to their neighbors in

the form of so called messages [44]. One of the main advantages of the BP algorithm

is that it computes all the (conditional) marginal distributions simultaneously.

Thus, one can run the algorithm once for multiple inference queries instead of

re-running it for each single query. However, the BP algorithm has a limitation:

it computes the exact inference solution only for graphs with no undirected cycles

(loops). Recall that the DBN that is built for the joint obfuscation case has loops

(See Fig. 4.c). Thereby, the BP algorithm can not directly be used by the adversary

for the exact inference.

There exist, however, two algorithms in the literature, that are based on the

BP algorithm and can be applied on general graphs (i.e., with or without loops).

These algorithms are the junction tree algorithm and the loopy belief propaga-

tion algorithm . The junction tree algorithm (also known as the clique tree algo-

rithm) [29, 42], finds the exact inference solution but has a high space and time

complexity. The loopy belief propagation has a less inference cost compared to the

junction tree but it finds the approximate inference solution [45, 43]. The adver-

sary can choose one of these two algorithms for performing the inference attacks

based on the resources that he has at his disposal. If the inference cost is not

very important to him, he can apply the junction tree algorithm. However, if he

has limited resources, he can apply the loopy belief propagation algorithm which

provides a good approximation of the exact inference solutions [43, 42].

4. Privacy Metrics

In this section, we present the metrics to measure the location privacy and the

semantic location privacy of a user with respect to the inference attacks.
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4.1. Location Privacy Metric

The location privacy of a user u a time t is measured by the expected error of

the adversary when performing the location-inference attack [53]. The expected

error of the adversary is computed as:

∑

r∈R
Pr
(
Rtu = r

∣∣ r̃1:Tu , s̃1:Tu
)
· dloc(r, rtu) (8)

where Pr
(
Rtu = r

∣∣ r̃1:Tu , s̃1:Tu
)

over set R, is the output of the location-inference

attack defined in Section 2.5.2 and dloc(·,·) denotes a distance function on the set

R of regions. Here, we assume that dloc(·,·) is the Haversine distance between the

centers of the two regions [39].

4.2. Semantic Location Privacy Metric

The semantic location privacy of a user u a time t is measured by the expected

error of the adversary when performing the semantic tag-inference attack [53, 1].

The expected error of the adversary is computed as:

∑

s∈S
Pr
(
Stu = s

∣∣ r̃1:Tu , s̃1:Tu
)
· dsem(s, stu) (9)

where Pr
(
Stu = s

∣∣ r̃1:Tu , s̃1:Tu
)

over set S, is the output of the semantic tag-

inference attack defined in Section 2.5.2 and dsem(·,·) denotes a distance function

on the set S of semantic tags. Given two semantic tags s and s′, we use the method

introduced in [1] to compute dsem(s, s′) as below:

dsem(s, s′) =
dgraph(s, s′)

dgraph(s, root) + dgraph(s′, root)
(10)

where dgraph(·,·) denotes the graph distance between the two given semantic

tags (nodes) in the semantic tag tree and is measured by the number of edges

in the shortest path connecting them. Moreover, root denotes the root of the

semantic tag tree.

5. Experimental Evaluation

Using a dataset of real-world user mobility traces, we perform an experimental

evaluation to compare the performance of the joint obfuscation approach with the

performance of the disjoint approach in terms of location privacy and semantic lo-

cation privacy. We also study how different parameters can affect the performance

of the obfuscation approaches. More precisely, we first obfuscate the traces of the

users under the disjoint and the joint approaches using different combinations of
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the obfuscation parameters. Then, we perform the inference attacks on the obfus-

cated traces and measure the privacy of the users in both approaches based on the

results of the attacks. Finally, we compare the privacy results obtained for each

approach.

5.1. Evaluation Setup

In this section, we describe the experimental evaluation’s setup.

5.1.1. Dataset

We use the dataset that is collected between January 2015 and July 2015 by

Ağir et al. for the research purposes and used for evaluation of the disjoint obfus-

cation approach in [1]. It comprises the semantically-annotated location traces of

Foursquare check-ins (collected through Twitter’s public stream) of total of 1065

users distributed across six large cities in North America and Europe, namely

Boston, Chicago, Istanbul, London, New York and San Francisco. The location

information in the traces is presented as GPS coordinates. The dataset also con-

tains a snapshot of Foursquare category tree at the time of data collection.

5.1.2. Space Discretization

We use the same space discretization described in [1]. More precisely, within

each city in the dataset, a geographical area of size ∼ 2.4 km × 1.6 km that

contains the largest number of check-ins is selected. Then, each selected area is

partitioned into 96 locations (cells) by using a 12 × 8 regular square grid. Each

grid cell has a unique ID. Once the partitioning is done, the GPS coordinates

in user traces are translated into the location (i.e., the grid cell) they fall into.

Moreover, for each grid cell, the Foursquare semantic tags of the venues that are

located in that cell are identified and stored in an associative array. Thus, the

associative array contains the key-value pairs, where in each pair the key is a grid

cell ID and the value is the set of the semantic tags of the venues located in that

cell. The associative array can be used by the location obfuscation algorithm (

i.e., Algorithm 2 described in Section 5.1.3) in the case of joint obfuscation.

5.1.3. Obfuscation

In the following, we first introduce the pseudocode of the algorithms that we

use for the semantic tag obfuscation and the location obfuscation in our evaluation.

We then describe the process of building the obfuscated traces from the real traces

using these algorithms. Note that for our experimental evaluation, the algorithms

presented hereafter are implemented in Python.
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Algorithm 1: Semantic Tag Obfuscation Algorithm

input : a set S of semantic tags that form a semantic tag tree, a semantic tag s in S, a semantic tag obfuscation level osem

output: a pseudo-semantic tag s̃ for s

1 begin

2 s̃← getAncestor(S, s, osem)

3 return s̃

Algorithm 2: Location Obfuscation Algorithm

input : a grid mainGrid, a cell (location) r of mainGrid, a location obfuscation level oloc, an obfuscation approach

approach, the semantic tag tree S that is used as input by Algorithm 1, the pseudo-semantic tag s̃ that is output

by Algorithm 1, an associative array SemanticTagsTable that contains key-value pairs where in each pair the key is

a main grid cell ID and the value is the set of the semantic tags of the venues located in that cell (S, s̃ and

SemanticTagsTable should only be input if a joint obfuscation approach is used).

output: a cloaking area r̃

1 begin

2 potentialCloakingAreas← getPotentialCloakingAreas(mainGrid, r, oloc)

3 if approach=disjoint then

4 r̃ ← selectCloackingAreaForDisjointApproach(potentialCloakingAreas)

5 if approach=joint then

6 r̃ ← selectCloackingAreaForJointApproach(potentialCloakingAreas,S, s̃,SemanticTagsTable)

7 return r̃

8 function getPotentialCloakingAreas(mainGrid, r, oloc)

9 cloakingGrids← getCloakingGrids(mainGrid, oloc)

10 potentialCloakingAreas← {}
11 for cloakingGrid in cloakingGrids do

12 potentialCloakingAreas← potentialCloakingAreas ∪ getCloackingGridCell(cloakingGrid, r)

13 return potentialCloakingAreas

14 function selectCloackingAreaForDisjointApproach(potentialCloakingAreas)

15 selectedCloackingArea← selectAreaRandomly(potentialCloakingAreas)

16 return selectedCloackingArea

17 function selectCloackingAreaForJointApproach(potentialCloakingAreas,S, s̃,SemanticTagsTable)

18 AreasWithMaxNCR← selectAreasWithMaxNCR(potentialCloakingAreas,S, s̃,SemanticTagsTable)

19 if |AreasWithMaxNCR| = 1 then

20 selectedCloackingArea← AreasWithMaxNCR

21 else

22 AreasWithMaxSumNCV← selectAreasWithMaxSumNCV(AreasWithMaxNCR,S, s̃,SemanticTagsTable)

23 if |AreasWithMaxSumNCV | = 1 then

24 selectedCloackingArea← AreasWithMaxSumNCV

25 else

26 selectedCloackingArea← selectAreaRandomly(AreasWithMaxSumNCV)

27 return selectedCloackingArea
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Semantic Tag Obfuscation Algorithm. The semantic tag obfuscation in both

disjoint and joint obfuscation approaches is performed by Algorithm 1. The al-

gorithm gets as input a set S of semantic tags that form a semantic tag tree, a

semantic tag s in S and a semantic tag obfuscation level osem. It returns as output

a pseudo-semantic tag s̃, where s̃ is the ancestor of s that is osem level(s) above

s in the semantic tag tree (see the function getAncestor in line 2). To better

understand how the algorithm works, consider the following example. Assume that

the “burger joint” tag is given as input to the algorithm. Assume also that the

“burger joint” tag is a child and a grandchild of the “restaurant” and the “food”

tags in the semantic tag tree, respectively. Then, the algorithm returns as output

the “restaurant” tag if osem = 1 and it returns the “food” tag if osem = 2. In the

case where the depth of semantic tag s in the semantic tag tree is smaller than

osem, the function getAncestor returns the root of the the semantic tag tree

as s̃. Note that in our evaluation, we use the Foursquare category tree (which is

included in the dataset) as the input S of the algorithm.

Location Obfuscation Algorithm. The location obfuscation in both disjoint

and joint obfuscation approaches is performed by Algorithm 2. Note that this

algorithm is one of the various possibilities for implementing the location obfusca-

tion. The algorithm takes as input a grid (that we call the main grid for the sake of

precision and which is denoted by mainGrid), a cell r of the main grid, a location

obfuscation level oloc and an obfuscation approach (denoted by approach). In the

case of joint obfuscation, in addition to what has been described, the following

inputs should also be provided: the semantic tag tree S that is used as input by

Algorithm 1, the pseudo-semantic tag s̃ that is output by Algorithm 1 and an

associative array SemanticTagsTable that contains key-value pairs where in each

pair the key is a main grid cell ID and the value is the set of the semantic tags of

the venues located in that cell. The algorithm returns as output a cloaking area r̃

for r. Note that, in our evaluation, we perform the location obfuscation for user

traces of all 6 cities in the dataset. Thus, for each city, the mainGrid and the

SemanticTagsTable which are input by the algorithm, are the ones obtained from

the space discretization process described in Section 5.1.2.

The main idea behind the algorithm is to first find a set of potential cloaking

areas for r (denoted by potentialCloakingAreas) and then based on the obfuscation

approach, select an area among the potential cloaking areas and return it as r̃

(lines 2-7).

The algorithm finds the potential cloaking areas by building a set of cloaking

grids (denoted by cloakingGrids) (line 9). A cloaking grid is an alternative tes-

sellation for the same surface presented by the main grid. It has two properties:
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(1) each cell of a cloaking grid is made of oloc distinct cells of the main grid; (2)

the number of rows and the number of columns of a cloaking grid are factors of

the number of rows and the number of columns of the main grid, respectively.

Recall that in our evaluations, the main grid has square cells. Accordingly, in our

evaluations, a cloaking grid can have either square or rectangular cells where each

cell covers oloc distinct cells of the main grid. Each cloaking grid can be used to

find a potential cloaking area for r. More precisely, the cell of a cloaking grid

that contains r, is a potential cloaking area for r and can be added to the set of

potential cloaking areas (lines 10-13).

Once the potential cloaking areas are found, an area among them is selected

and returned as r̃. The selection is made based on the obfuscation approach.

More precisely, in the case of the disjoint obfuscation, the algorithm calls the

function selectCloackingAreaForDisjointApproach (line 4), which selects

an area uniformly at random among the potential cloaking areas by calling the

function selectAreaRandomly (line 15). In the case of the joint obfuscation,

the function selectCloackingAreaForJointApproach (line 6) is called. This

function first calls the function selectAreasWithMaxNCR which looks for

the areas with the maximum NCRs̃ value among the potential cloaking areas

(line 18). The results are then stored in the set AreasWithMaxNCR. If only

one area with the maximum NCRs̃ value is found (i.e., |AreasWithMaxNCR| =

1), it is returned as the selected cloaking area (line 20). Otherwise, the function

selectAreasWithMaxSumNCV is called which looks for the areas with the

maximum SumNCVs̃ value among the elements of AreasWithMaxNCR (line 22).

The results are then stored in the set AreasWithMaxSumNCV. Note that the

SumNCVs̃ of an area is in fact the sum of NCVs̃ values over all the main grid

cells in that area. If only one area with the maximum SumNCVs̃ value is found

(i.e., |AreasWithMaxSumNCV| = 1), it is returned as the selected cloaking area

(line 24). Otherwise, an area is selected uniformly at random among the elements

of AreasWithMaxSumNCV by calling the function selectAreaRandomly and

the result is returned as the selected cloaking area (line 26).7

As described, the function selectCloackingAreaForJointApproach does

not only select a cloaking area with the maximum NCRs̃ value among the potential

cloaking areas. But, in the case that more than one potential cloaking area with

the maximum NCRs̃ value exist, this function selects the area that has the maxi-

mum SumNCVs̃ value among the areas with the maximum NCRs̃ value. Selecting

7Note that the inputs S, s̃ and SemanticTagsTable are provided to the functions

selectAreasWithMaxNCR and selectAreasWithMaxSumNCV so that they can be used

by these functions for the calculation of NCRs̃ and SumNCVs̃ of the cloaking areas.
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the area with the maximum SumNCVs̃ value is an additional mechanism that we

use to enhance the resistance of the joint obfuscation against the privacy attacks.

Roughly speaking, by selecting the cloaking area with the maximum NCRs̃ value,

we decrease the number of locations that can be filtered out by the adversary from

the cloaking area and by selecting the area with the maximum SumNCVs̃ value

(i.e., the area with the maximum number of semantically compatible venues), we

potentially increase the number of locations and semantic tags that can be guessed

by the adversary as the actual location and semantic tag.

Fig. 5, illustrates an example walkthrough of Algorithm 2. The main grid is a

4× 4 grid.8 The number at the bottom-right of a cell represents its identifier and

the number in the black square at the top-left of each cell represents its NCVs̃,

where s̃ is the pseudo-semantic tag returned by Algorithm 1. The NCVs̃ of cells

will be used in our example for explaining the joint obfuscation approach and

comparing its output with the output of the disjoint approach in terms of semantic

compatibility.9 We assume that the cell to be obfuscated is cell 6 and oloc = 4 (see

Fig. 5.a).

The algorithm first creates a set of 4× 1, 2× 2 and 1× 4 cloaking grids. These

cloaking grids are shown in Fig. 5.b from top to bottom, respectively. Note that

since oloc is equal to 4, each cell of these cloaking grids contains 4 distinct cells

of the main grid. Moreover, since the main grid is 4× 4, the number of rows and

the number of columns of all these cloaking grids are the factors of 4. Once the

cloaking grids are built, the algorithm finds the potential cloaking areas. More

precisely, in each cloaking grid the cell that contains the cell 6 of the main grid is

identified as a potential cloaking area (see Fig. 5.c where potential cloaking areas

are represented in gray). Thus, the resulting set of potential cloaking areas includes

three areas: the area made of the main grid cells {2, 6, 10, 14} with NCRs̃ = 3 and

SumNCVs̃ = 20, the area made of the main grid cells {1, 2, 5, 6} with NCRs̃ =

4 and SumNCVs̃ = 18 and the area made of the main grid cells {5, 6, 7, 8} with

NCRs̃ = 4 and SumNCVs̃ = 12.

If a disjoint obfuscation approach is used, the algorithm selects uniformly at

random an area among the potential cloaking areas. Let us assume that the

algorithm selects the area {2, 6, 10, 14} and returns it as r̃ (see Fig. 5.d). By

verifying NCRs̃ of this area, we realize that it has the minimum value of NCRs̃ (i.e.,

NCRs̃ = 3) among the potential cloaking areas. However, if a joint obfuscation

approach is used, the algorithm selects the area {1, 2, 5, 6} and returns it as r̃ (see

8In this paper, a grid is defined by the number of its columns × the number of its rows.
9Recall that NCRs̃ and SumNCVs̃ can both be calculated based on the value of NCVs̃. In

fact, NCRs̃ is equal to the number of cells that are semantically compatible with s̃ i.e., the cells

that have NCVs̃ > 0. Also, SumNCVs̃ is the sum of NCVs̃ over all cells in the cloaking area.
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(a) Main Grid

(d) Selected Cloaking Areas

Figure 5: Example walkthrough of the location obfuscation algorithm (Algorithm 2).

In the figure, the cell to be obfuscated is cell 6 and the cloaking areas are represented in gray.

Moreover, the number at the bottom-right of a cell represents its identifier and the number in

the black square at the top-left of a cell represents its NCVs̃, where s̃ is the pseudo-semantic tag

returned by Algorithm 1.

Fig. 5.d). This cloaking area has the maximum value of NCRs̃ (i.e., NCRs̃ = 4).

Note that the area {5, 6, 7, 8} has also NCRs̃ = 4. However, its SumNCVs̃ = 12

which is less than the SumNCVs̃ value of the area {1, 2, 5, 6} i.e., SumNCVs̃ = 18.

That is why the area {1, 2, 5, 6} is selected and returned as r̃.

Building the Obfuscated Traces. For each city in the dataset, we choose the

location traces and the semantic tag traces of 20 randomly chosen users. These

traces are then obfuscated under the disjoint and the joint obfuscation approaches

using Algorithms 1 and 2. To better capture the fact that the users do not share

their locations and their corresponding semantic tags all the time on LBSNs, we

apply the obfuscation algorithms with an additional hiding process. More precisely,

we assume that at each time instant in the observation interval, both the user’s

location and its semantic tag can be hidden from the LBSN with the hiding prob-

ability λ or shared on the LBSN (and accordingly obfuscated by the algorithms

under the disjoint and the joint approaches) with the probability 1− λ. The hid-

den locations and the hidden semantic tags are appeared in the obfuscated traces

as hidden, denoted by r⊥ and s⊥ symbols, respectively. To build the obfuscated

traces for each approach, we use all combinations of the following parameters:
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the location obfuscation level (oloc), the semantic tag obfuscation level (osem) and

the hiding probability (λ), where oloc ∈ {1, 2, 4, 8, 16} and osem ∈ {0, 1, 2} and

λ ∈ {0, 0.2, 0.4, 0.6, 0.8}. For simplicity’s sake, in what follows, we use the term

the obfuscation parameters to refer to these parameters.10

5.1.4. Attacks and Privacy Evaluation

We implement the DBN models defined in Section 3, in Python by using the

pomegranate package for the probabilistic models [47] and the Bayesian Belief Net-

works library provided by eBay [5]. The probability distributions of the basic DBN

model are learned from the user traces using the Location-Privacy and Mobility

Meter tool [36]. For the attacks, we apply the loopy belief propagation inference

algorithm [43]. We perform the attacks for the observation interval of length 3.

We then use the metrics defined in Section 4 to measure the location privacy and

the semantic location privacy of the users.

5.2. Evaluation Results

We consider the obfuscation parameters and the choice of the city11 as the pa-

rameters that can affect the performance of an obfuscation approach. Accordingly,

in this section we present the results for different values of these parameters. In

this way, we can compare the performance of the two obfuscation approaches un-

der different values of these parameters and we can also show how changing these

parameters affects the performance of the obfuscation approaches. Note that in

addition to the privacy metrics presented in Section 4, to discuss the results, we

use two additional metrics:

• Ratio of the location privacy means (denoted by loc-priv-ratio.) This is

the ratio of the location privacy mean obtained for the joint approach to the

location privacy mean obtained for the disjoint approach.

• Ratio of the semantic location privacy means (denoted by sem-priv-ratio).

This is the ratio of the semantic location privacy mean obtained for the joint

approach to the semantic location privacy mean obtained for the disjoint ap-

proach.

10In the dataset, the majority of the venues’ semantic tags have a depth of 2 with respect to

the Foursquare category tree. Thereby, we limit the maximum osem value to 2 in our evaluations.
11As we further discuss in Section 5.2.2, the main parameter in a city that affects the perfor-

mance of an obfuscation approach is the distribution of the number of venues per region in that

city.
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The experimental evaluation results are depicted by Fig. 6, Fig. 7, Fig. 8 and

Fig. 9. More precisely, Fig. 6 and Fig. 7, represent the location privacy results and

the semantic location privacy results in the form of boxplots (i.e., first quartile,

median, third quartile and outliers), respectively. Note that the location privacy in

Fig. 6 is expressed in kilometres. Also, Fig. 8 and Fig. 9 represent the ratios of the

location privacy means and the ratios of the semantic location privacy means in

the form of scatterplots, respectively. Each figure has four subfigures (a), (b), (c)

and (d). Each subfigure represents the aggregated results for different values of a

given parameter, where the aggregation is performed over the results obtained for

all users, all values of the obfuscation parameters and all cities. In the following,

we first discuss the results for different obfuscation parameters. We then discuss

the results for different cities.

5.2.1. Results for Different Obfuscation Parameters

We have three main observations regarding these results. Thus, in the follow-

ing we first describe the observations. Then, we describe the reason behind the

observations.

1. As the values of oloc, osem and λ increase, the median location privacy and the

median semantic location privacy for the both obfuscation approaches increase

(see subfigures (a), (b), (c) of Fig. 6 and Fig. 7).

2. Under all values of oloc, osem and λ, the median location privacy and the median

semantic location privacy obtained for the joint approach are higher than the

median location privacy and the median semantic location privacy obtained for

the disjoint approach, respectively (see subfigures (a), (b), (c) of Fig. 6 and

Fig. 7). There exist two exceptions to this observation. The first exception is

the case where oloc = 1. In this case, the median location privacy is the same

for the both obfuscation approaches (See Fig. 6.a). Also, the median semantic

location privacy is the same for the both obfuscation approaches (see Fig. 7.a).

In fact, in the case where oloc = 1, no location obfuscation is performed since

the cloaking area can contain only one location (region) which is the actual

location of the user. We know that the main difference between the obfuscation

approaches is in the way that they obfuscate the actual location. Accordingly,

in the case where no location obfuscation is performed, there is no difference

between the performance of the two approaches. The second exception is the

case where osem = 0. In this case, the median semantic location privacy is the

same for the both obfuscation approaches (See Fig. 7.b). Recall that in the case

where osem = 0, there is no semantic tag obfuscation. Accordingly, the median
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Figure 6: Location privacy results.

(a) For Different oloc
<latexit sha1_base64="gyxOLjPtOHk7SI5VVoOlKB8TVGQ=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCShscREQAMXsrfswYb9uOzumZALv8LGQmNs/Tl2/hsXuELBl0zy8t5MZuZFCWfG+v63V9jY3NreKe6W9vYPDo/Kxycdo1JNaJsorvRDhA3lTNK2ZZbTh0RTLCJOu9GkOfe7T1QbpuS9nSY0FHgkWcwItk56rKpBxhWZVQflil/zF0DrJMhJBXK0BuWv/lCRVFBpCcfG9AI/sWGGtWWE01mpnxqaYDLBI9pzVGJBTZgtDp6hC6cMUay0K2nRQv09kWFhzFRErlNgOzar3lz8z+ulNr4JMyaT1FJJlovilCOr0Px7NGSaEsunjmCimbsVkTHWmFiXUcmFEKy+vE469VpwVavf1SuNZh5HEc7gHC4hgGtowC20oA0EBDzDK7x52nvx3r2PZWvBy2dO4Q+8zx9lQJAj</latexit>

oloc
<latexit sha1_base64="gyxOLjPtOHk7SI5VVoOlKB8TVGQ=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCShscREQAMXsrfswYb9uOzumZALv8LGQmNs/Tl2/hsXuELBl0zy8t5MZuZFCWfG+v63V9jY3NreKe6W9vYPDo/Kxycdo1JNaJsorvRDhA3lTNK2ZZbTh0RTLCJOu9GkOfe7T1QbpuS9nSY0FHgkWcwItk56rKpBxhWZVQflil/zF0DrJMhJBXK0BuWv/lCRVFBpCcfG9AI/sWGGtWWE01mpnxqaYDLBI9pzVGJBTZgtDp6hC6cMUay0K2nRQv09kWFhzFRErlNgOzar3lz8z+ulNr4JMyaT1FJJlovilCOr0Px7NGSaEsunjmCimbsVkTHWmFiXUcmFEKy+vE469VpwVavf1SuNZh5HEc7gHC4hgGtowC20oA0EBDzDK7x52nvx3r2PZWvBy2dO4Q+8zx9lQJAj</latexit>  Values (b) For Different osem

<latexit sha1_base64="oRYdhBPKAG+HYmfUQJnP0l9Uen8=">AAAB8HicbVA9TwJBEN3DL8Qv1NJmI5hYkTsstCShscREQAMXsrfMwYb9uOzumZALv8LGQmNs/Tl2/hsXuELBl0zy8t5MZuZFCWfG+v63V9jY3NreKe6W9vYPDo/Kxycdo1JNoU0VV/ohIgY4k9C2zHJ4SDQQEXHoRpPm3O8+gTZMyXs7TSAUZCRZzCixTnqsqkFmQMyqg3LFr/kL4HUS5KSCcrQG5a/+UNFUgLSUE2N6gZ/YMCPaMsphVuqnBhJCJ2QEPUclEWDCbHHwDF84ZYhjpV1Jixfq74mMCGOmInKdgtixWfXm4n9eL7XxTZgxmaQWJF0uilOOrcLz7/GQaaCWTx0hVDN3K6Zjogm1LqOSCyFYfXmddOq14KpWv6tXGs08jiI6Q+foEgXoGjXQLWqhNqJIoGf0it487b14797HsrXg5TOn6A+8zx9v7pAq</latexit>

osem
<latexit sha1_base64="oRYdhBPKAG+HYmfUQJnP0l9Uen8=">AAAB8HicbVA9TwJBEN3DL8Qv1NJmI5hYkTsstCShscREQAMXsrfMwYb9uOzumZALv8LGQmNs/Tl2/hsXuELBl0zy8t5MZuZFCWfG+v63V9jY3NreKe6W9vYPDo/Kxycdo1JNoU0VV/ohIgY4k9C2zHJ4SDQQEXHoRpPm3O8+gTZMyXs7TSAUZCRZzCixTnqsqkFmQMyqg3LFr/kL4HUS5KSCcrQG5a/+UNFUgLSUE2N6gZ/YMCPaMsphVuqnBhJCJ2QEPUclEWDCbHHwDF84ZYhjpV1Jixfq74mMCGOmInKdgtixWfXm4n9eL7XxTZgxmaQWJF0uilOOrcLz7/GQaaCWTx0hVDN3K6Zjogm1LqOSCyFYfXmddOq14KpWv6tXGs08jiI6Q+foEgXoGjXQLWqhNqJIoGf0it487b14797HsrXg5TOn6A+8zx9v7pAq</latexit>  Values
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Figure 7: Semantic location privacy results.

(a) For Different oloc
<latexit sha1_base64="gyxOLjPtOHk7SI5VVoOlKB8TVGQ=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCShscREQAMXsrfswYb9uOzumZALv8LGQmNs/Tl2/hsXuELBl0zy8t5MZuZFCWfG+v63V9jY3NreKe6W9vYPDo/Kxycdo1JNaJsorvRDhA3lTNK2ZZbTh0RTLCJOu9GkOfe7T1QbpuS9nSY0FHgkWcwItk56rKpBxhWZVQflil/zF0DrJMhJBXK0BuWv/lCRVFBpCcfG9AI/sWGGtWWE01mpnxqaYDLBI9pzVGJBTZgtDp6hC6cMUay0K2nRQv09kWFhzFRErlNgOzar3lz8z+ulNr4JMyaT1FJJlovilCOr0Px7NGSaEsunjmCimbsVkTHWmFiXUcmFEKy+vE469VpwVavf1SuNZh5HEc7gHC4hgGtowC20oA0EBDzDK7x52nvx3r2PZWvBy2dO4Q+8zx9lQJAj</latexit>

oloc
<latexit sha1_base64="gyxOLjPtOHk7SI5VVoOlKB8TVGQ=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCShscREQAMXsrfswYb9uOzumZALv8LGQmNs/Tl2/hsXuELBl0zy8t5MZuZFCWfG+v63V9jY3NreKe6W9vYPDo/Kxycdo1JNaJsorvRDhA3lTNK2ZZbTh0RTLCJOu9GkOfe7T1QbpuS9nSY0FHgkWcwItk56rKpBxhWZVQflil/zF0DrJMhJBXK0BuWv/lCRVFBpCcfG9AI/sWGGtWWE01mpnxqaYDLBI9pzVGJBTZgtDp6hC6cMUay0K2nRQv09kWFhzFRErlNgOzar3lz8z+ulNr4JMyaT1FJJlovilCOr0Px7NGSaEsunjmCimbsVkTHWmFiXUcmFEKy+vE469VpwVavf1SuNZh5HEc7gHC4hgGtowC20oA0EBDzDK7x52nvx3r2PZWvBy2dO4Q+8zx9lQJAj</latexit>  Values (b) For Different osem

<latexit sha1_base64="oRYdhBPKAG+HYmfUQJnP0l9Uen8=">AAAB8HicbVA9TwJBEN3DL8Qv1NJmI5hYkTsstCShscREQAMXsrfMwYb9uOzumZALv8LGQmNs/Tl2/hsXuELBl0zy8t5MZuZFCWfG+v63V9jY3NreKe6W9vYPDo/Kxycdo1JNoU0VV/ohIgY4k9C2zHJ4SDQQEXHoRpPm3O8+gTZMyXs7TSAUZCRZzCixTnqsqkFmQMyqg3LFr/kL4HUS5KSCcrQG5a/+UNFUgLSUE2N6gZ/YMCPaMsphVuqnBhJCJ2QEPUclEWDCbHHwDF84ZYhjpV1Jixfq74mMCGOmInKdgtixWfXm4n9eL7XxTZgxmaQWJF0uilOOrcLz7/GQaaCWTx0hVDN3K6Zjogm1LqOSCyFYfXmddOq14KpWv6tXGs08jiI6Q+foEgXoGjXQLWqhNqJIoGf0it487b14797HsrXg5TOn6A+8zx9v7pAq</latexit>

osem
<latexit sha1_base64="oRYdhBPKAG+HYmfUQJnP0l9Uen8=">AAAB8HicbVA9TwJBEN3DL8Qv1NJmI5hYkTsstCShscREQAMXsrfMwYb9uOzumZALv8LGQmNs/Tl2/hsXuELBl0zy8t5MZuZFCWfG+v63V9jY3NreKe6W9vYPDo/Kxycdo1JNoU0VV/ohIgY4k9C2zHJ4SDQQEXHoRpPm3O8+gTZMyXs7TSAUZCRZzCixTnqsqkFmQMyqg3LFr/kL4HUS5KSCcrQG5a/+UNFUgLSUE2N6gZ/YMCPaMsphVuqnBhJCJ2QEPUclEWDCbHHwDF84ZYhjpV1Jixfq74mMCGOmInKdgtixWfXm4n9eL7XxTZgxmaQWJF0uilOOrcLz7/GQaaCWTx0hVDN3K6Zjogm1LqOSCyFYfXmddOq14KpWv6tXGs08jiI6Q+foEgXoGjXQLWqhNqJIoGf0it487b14797HsrXg5TOn6A+8zx9v7pAq</latexit>  Values
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�
<latexit sha1_base64="1WnWPhFg7lgebxspwc6fxQt1rAo=">AAAB8HicbVDLTgIxFL2DL8QX6tJNI5i4IjOw0CUJG5eYyMPAhHQ6HWhoO5O2Y0ImfIUbFxrj1s9x599YYBYKnqTJyTnnpveeIOFMG9f9dgpb2zu7e8X90sHh0fFJ+fSsq+NUEdohMY9VP8CaciZpxzDDaT9RFIuA014wbS383hNVmsXywcwS6gs8lixiBBsrPVaH3GZDXB2VK27NXQJtEi8nFcjRHpW/hmFMUkGlIRxrPfDcxPgZVoYRTuelYappgskUj+nAUokF1X62XHiOrqwSoihW9kmDlurviQwLrWcisEmBzUSvewvxP2+QmujWz5hMUkMlWX0UpRyZGC2uRyFTlBg+swQTxeyuiEywwsTYjkq2BG/95E3Srde8Rq1+X680W3kdRbiAS7gGD26gCXfQhg4QEPAMr/DmKOfFeXc+VtGCk8+cwx84nz/4n4/c</latexit>  Values (d) For Different Cities

Figure 8: loc-priv-ratio for different parameters.

Note that loc-priv-ratio is the ratio of the location

privacy mean obtained for the joint approach to

the location privacy mean obtained for the disjoint

approach.

(a) For Different oloc
<latexit sha1_base64="gyxOLjPtOHk7SI5VVoOlKB8TVGQ=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCShscREQAMXsrfswYb9uOzumZALv8LGQmNs/Tl2/hsXuELBl0zy8t5MZuZFCWfG+v63V9jY3NreKe6W9vYPDo/Kxycdo1JNaJsorvRDhA3lTNK2ZZbTh0RTLCJOu9GkOfe7T1QbpuS9nSY0FHgkWcwItk56rKpBxhWZVQflil/zF0DrJMhJBXK0BuWv/lCRVFBpCcfG9AI/sWGGtWWE01mpnxqaYDLBI9pzVGJBTZgtDp6hC6cMUay0K2nRQv09kWFhzFRErlNgOzar3lz8z+ulNr4JMyaT1FJJlovilCOr0Px7NGSaEsunjmCimbsVkTHWmFiXUcmFEKy+vE469VpwVavf1SuNZh5HEc7gHC4hgGtowC20oA0EBDzDK7x52nvx3r2PZWvBy2dO4Q+8zx9lQJAj</latexit>

oloc
<latexit sha1_base64="gyxOLjPtOHk7SI5VVoOlKB8TVGQ=">AAAB8HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsstCShscREQAMXsrfswYb9uOzumZALv8LGQmNs/Tl2/hsXuELBl0zy8t5MZuZFCWfG+v63V9jY3NreKe6W9vYPDo/Kxycdo1JNaJsorvRDhA3lTNK2ZZbTh0RTLCJOu9GkOfe7T1QbpuS9nSY0FHgkWcwItk56rKpBxhWZVQflil/zF0DrJMhJBXK0BuWv/lCRVFBpCcfG9AI/sWGGtWWE01mpnxqaYDLBI9pzVGJBTZgtDp6hC6cMUay0K2nRQv09kWFhzFRErlNgOzar3lz8z+ulNr4JMyaT1FJJlovilCOr0Px7NGSaEsunjmCimbsVkTHWmFiXUcmFEKy+vE469VpwVavf1SuNZh5HEc7gHC4hgGtowC20oA0EBDzDK7x52nvx3r2PZWvBy2dO4Q+8zx9lQJAj</latexit>  Values (b) For Different osem

<latexit sha1_base64="oRYdhBPKAG+HYmfUQJnP0l9Uen8=">AAAB8HicbVA9TwJBEN3DL8Qv1NJmI5hYkTsstCShscREQAMXsrfMwYb9uOzumZALv8LGQmNs/Tl2/hsXuELBl0zy8t5MZuZFCWfG+v63V9jY3NreKe6W9vYPDo/Kxycdo1JNoU0VV/ohIgY4k9C2zHJ4SDQQEXHoRpPm3O8+gTZMyXs7TSAUZCRZzCixTnqsqkFmQMyqg3LFr/kL4HUS5KSCcrQG5a/+UNFUgLSUE2N6gZ/YMCPaMsphVuqnBhJCJ2QEPUclEWDCbHHwDF84ZYhjpV1Jixfq74mMCGOmInKdgtixWfXm4n9eL7XxTZgxmaQWJF0uilOOrcLz7/GQaaCWTx0hVDN3K6Zjogm1LqOSCyFYfXmddOq14KpWv6tXGs08jiI6Q+foEgXoGjXQLWqhNqJIoGf0it487b14797HsrXg5TOn6A+8zx9v7pAq</latexit>

osem
<latexit sha1_base64="oRYdhBPKAG+HYmfUQJnP0l9Uen8=">AAAB8HicbVA9TwJBEN3DL8Qv1NJmI5hYkTsstCShscREQAMXsrfMwYb9uOzumZALv8LGQmNs/Tl2/hsXuELBl0zy8t5MZuZFCWfG+v63V9jY3NreKe6W9vYPDo/Kxycdo1JNoU0VV/ohIgY4k9C2zHJ4SDQQEXHoRpPm3O8+gTZMyXs7TSAUZCRZzCixTnqsqkFmQMyqg3LFr/kL4HUS5KSCcrQG5a/+UNFUgLSUE2N6gZ/YMCPaMsphVuqnBhJCJ2QEPUclEWDCbHHwDF84ZYhjpV1Jixfq74mMCGOmInKdgtixWfXm4n9eL7XxTZgxmaQWJF0uilOOrcLz7/GQaaCWTx0hVDN3K6Zjogm1LqOSCyFYfXmddOq14KpWv6tXGs08jiI6Q+foEgXoGjXQLWqhNqJIoGf0it487b14797HsrXg5TOn6A+8zx9v7pAq</latexit>  Values

(c) For Different �<latexit sha1_base64="1WnWPhFg7lgebxspwc6fxQt1rAo=">AAAB8HicbVDLTgIxFL2DL8QX6tJNI5i4IjOw0CUJG5eYyMPAhHQ6HWhoO5O2Y0ImfIUbFxrj1s9x599YYBYKnqTJyTnnpveeIOFMG9f9dgpb2zu7e8X90sHh0fFJ+fSsq+NUEdohMY9VP8CaciZpxzDDaT9RFIuA014wbS383hNVmsXywcwS6gs8lixiBBsrPVaH3GZDXB2VK27NXQJtEi8nFcjRHpW/hmFMUkGlIRxrPfDcxPgZVoYRTuelYappgskUj+nAUokF1X62XHiOrqwSoihW9kmDlurviQwLrWcisEmBzUSvewvxP2+QmujWz5hMUkMlWX0UpRyZGC2uRyFTlBg+swQTxeyuiEywwsTYjkq2BG/95E3Srde8Rq1+X680W3kdRbiAS7gGD26gCXfQhg4QEPAMr/DmKOfFeXc+VtGCk8+cwx84nz/4n4/c</latexit>

�
<latexit sha1_base64="1WnWPhFg7lgebxspwc6fxQt1rAo=">AAAB8HicbVDLTgIxFL2DL8QX6tJNI5i4IjOw0CUJG5eYyMPAhHQ6HWhoO5O2Y0ImfIUbFxrj1s9x599YYBYKnqTJyTnnpveeIOFMG9f9dgpb2zu7e8X90sHh0fFJ+fSsq+NUEdohMY9VP8CaciZpxzDDaT9RFIuA014wbS383hNVmsXywcwS6gs8lixiBBsrPVaH3GZDXB2VK27NXQJtEi8nFcjRHpW/hmFMUkGlIRxrPfDcxPgZVoYRTuelYappgskUj+nAUokF1X62XHiOrqwSoihW9kmDlurviQwLrWcisEmBzUSvewvxP2+QmujWz5hMUkMlWX0UpRyZGC2uRyFTlBg+swQTxeyuiEywwsTYjkq2BG/95E3Srde8Rq1+X680W3kdRbiAS7gGD26gCXfQhg4QEPAMr/DmKOfFeXc+VtGCk8+cwx84nz/4n4/c</latexit>  Values (d) For Different Cities

Figure 9: sem-priv-ratio for different parameters.

Note that sem-priv-ratio is the ratio of the seman-

tic location privacy mean obtained for the joint ap-

proach to the semantic location privacy mean ob-

tained for the disjoint approach.
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semantic location privacy is the same regardless of the obfuscation approach.12

3. As the value of oloc increases, the values of loc-priv-ratio and sem-priv-ratio

also increase (see Fig. 8.a and Fig. 9.a). Similarly, as the value of osem in-

creases, the values of loc-priv-ratio and sem-priv-ratio increase (see Fig. 8.b and

Fig. 9.b). However, as the value of λ increases, the values of loc-priv-ratio and

sem-priv-ratio decrease (see Fig. 8.c and Fig. 9.c )

To explain these observations, we apply the following reasoning. As the value

of oloc increases, the number of regions (locations) in the cloaking area increases.

Thus, by increasing oloc, the performance of the both approaches improve. Also, as

the value of osem increases, the number of semantic tags that can be semantically

compatible with the obfuscated semantic tag increases. This, in turn, increases the

chance of having more semantically compatible regions with the obfuscated seman-

tic tag in every potential cloaking area. Thus, by increasing osem the performance

of the both approaches improve. Moreover, we observe that by increasing oloc and

osem, the values of loc-priv-ratio and sem-priv-ratio also increase. For instance,

in the case where oloc = 2, we have loc-priv-ratio = 1.09 and sem-priv-ratio =

1.07, whereas in the case where oloc = 16, we have loc-priv-ratio = 1.41 and

sem-priv-ratio = 1.33 (see Fig. 8.a and Fig. 9.a). Also, in the case where osem = 1,

we have loc-priv-ratio = 1.26 and sem-priv-ratio = 1.15, whereas in the case where

osem = 2, we have loc-priv-ratio = 1.37 and sem-priv-ratio = 1.29 (see Fig. 8.b and

Fig. 9.b). Roughly speaking, this means that the joint approach shows a much

better performance compared to the disjoint approach under higher values of oloc

and osem. In fact, as the value of oloc increases, the number of candidate regions for

being in the cloaking area also increases. This, in turn, increases the chance that

a greater number of the candidate regions are semantically compatible with the

obfuscated semantic tag. Similarly, as the value of osem increases, the chance that

a greater number of candidate regions are semantically compatible with the obfus-

cated semantic tag increases. The joint approach takes advantage of this increase,

i.e., as the number of semantically compatible candidate regions increases, the joint

approach selects a cloaking area with a greater number of semantically compati-

ble regions and semantically compatible venues, whereas the disjoint approach is

oblivious to the concept of semantic compatibility. Accordingly, the performance

12Note that in Fig. 6.a in the case where oloc = 1, the location privacy results are not equal

to zero. Also, in Fig. 7.b in the case where osem = 0, the semantic location privacy results are

not equal to zero. The reason is that our plots aggregate all results including the results for

the values of λ (i.e., the hiding probability) that are not equal to zero. Accordingly, even in the

absence of location obfuscation or semantic tag obfuscation, the privacy results in the figures are

not equal to zero.
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of the disjoint approach does not improve as much as the performance of the joint

approach by increasing the values of oloc and osem. We also observe that as the

value of λ increases, the performance of the both approaches improves. However,

by increasing λ, the values of loc-priv-ratio and sem-priv-ratio decrease. Roughly

speaking, this means that by increasing λ, the difference between the performance

of the both approaches becomes less significant. Intuitively, this is because by

increasing λ, we increase the number of hidden locations and hidden semantic tags

compared to the number of the obfuscated locations and the obfuscated semantic

tags in the obfuscated traces. This, in turn, increases the privacies resulting for the

both approaches but it also decreases the importance of the obfuscation approach

in defining the amount of the resulting privacies.

5.2.2. Results for Different Cities

The main parameter in a city that affects the performance of an obfuscation

approach is the distribution of the number of venues per region in that city. Ac-

cordingly, in the following, we first discuss the distribution of the number of venues

per region in each city, we then present the evaluation results for each city.

Fig. 10 depicts the distribution of the number of venues per region (location)

in different cities. More precisely, in this figure for each city, we draw one boxlpot

to aggregate the number of venues per region for all regions in that city. Moreover,

let MNV of a city denote the median of the number of venues per region for that

city, then the cities in the City axis of Fig. 10 are ordered in an ascending order

with respect to their MNV values. Note that in Fig. 10, the horizontal line drawn

in the middle of each city’s boxplot corresponds to the MNV of that city. Thus, the

lowest MNV corresponds to the city of Istanbul with MNV = 7.5 and the highest

MNV corresponds to the city of London with MNV = 38. To better illustrate

the dependency of the privacy results in each city to the number of venues per

region, we also arrange the cities in the City axes of Fig. 6.d, Fig. 7.d, Fig. 8.d and

Fig. 9.d in the same order as Fig. 10’s City axis. Again, we have three observations

regarding the results:

1. As MNV increases across the cities, the median location privacy and the median

semantic location privacy also increase for the both obfuscation approaches (see

Fig. 6.d, Fig. 7.d, respectively).

2. In all cities, the median location privacy and the median semantic location

privacy obtained for the joint approach are higher than the median location

privacy and the median semantic location privacy obtained for the disjoint

approach, respectively (see Fig. 6.d, Fig. 7.d, respectively).
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3. As MNV increases across the cities, the values of loc-priv-ratio and sem-priv-ratio

increase (see Fig. 8.d, Fig. 9.d, respectively). So, the lowest values of loc-priv-ratio

and sem-priv-ratio correspond to the city of Istanbul (with loc-priv-ratio =

1.10 and sem-priv-ratio = 1.09) and the highest values of loc-priv-ratio and

sem-priv-ratio correspond to the city of London (with loc-priv-ratio = 1.41 and

sem-priv-ratio = 1.32).

The reason behind these observations is as follows. Intuitively, the greater is

the number of the venues in a region (location), the higher is the chance that

a number of these venues are semantically compatible with a given obfuscated

semantic tag. Thereby, the chance that the regions of a city are semantically

compatible with a given obfuscated semantic tag increases as MNV in that city

increases. Thus, regardless of the obfuscation approach, a cloaking area made in a

city with a higher MNV has a better chance to have more semantically compatible

regions with a given obfuscated semantic tag. Accordingly, as MNV increases, the

performance of the both obfuscation approaches improve. However, the disjoint

obfuscation approach is oblivious to the concept of semantic compatibility. Thus,

as MNV increases, the disjoint approach cannot take advantage of the increase

in the number of semantically compatible regions as much as the joint approach

and its performance does not improve as much as the performance of the joint

approach. Hence, as MNV increases, the values of loc-priv-ratio and sem-priv-ratio

also increase.

6. Utility Discussion

As discussed in this paper, the location obfuscation and the semantic tag ob-

fuscation increase user’s privacy. However, they can at the same time reduce user’s

perceived quality of service (also known as utility). In this section, we first present

the definition of utility and how it can be taken into consideration while building

privacy protection mechanisms. We then present our conjecture about the per-

formance of the obfuscation approaches in terms of utility. We intend to test the

correctness of our conjecture in a future work.

To the best of our knowledge, the only work in the literature that presents a

methodology to quantify the utility loss caused by obfuscation is the one presented

in [7, 25]. According to the authors, a user’s purpose behind a check-in plays

a significant role in determining the utility of the check-in. Thus, they define

utility as “the extent to which the initial purpose of a check-in is still met after an

obfuscation function is applied” [7, 25]. To identify the main purposes behind user

check-ins and to see how location obfuscation and semantic tag obfuscation affect
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the utility of check-ins, they run a targeted user study on a group of Foursquare

users. The results of the study show that a user’s purpose behind a check-in is

not always to communicate her exact location and its semantic tag but can be

related to higher level social goals such as informing about her current activity or

mood. For instance, by checking-in to a restaurant in a city, a user might only

want to inform her friends about her activity (i.e., eating in a restaurant in that

city) without really wanting to reveal the exact type of the restaurant and its full

address [7, 25]. This means that obfuscating a user’s location and its semantic

tag does not always drastically reduce utility. Thus, if a user’s purpose behind

a check-in can be inferred (e.g., by machine learning algorithms) and the utility

loss for different obfuscation levels can be predicted using the inferred purpose,

then the privacy protection mechanism can adjust the obfuscation levels to best

match the user’s preferences in terms of utility and privacy. The authors present an

implementation of the building blocks of such privacy protection mechanism. More

specifically, they present machine learning algorithms that can infer the purpose

of check-ins based on some check-in features (e.g., textual information) and user

behaviors. They also present a utility model that predicts the utility loss caused

by obfuscation given the inferred purpose of the check-in and the obfuscation

level [7, 25].

Considering the utility definition described above, it is hard to conjecture about

the joint approach’s performance in terms of utility and compare it with the dis-

joint approach’s performance. The reason is that in both approaches the location

obfuscation level and the semantic tag obfuscation level are the input parameters

whose values cannot be changed by the obfuscation algorithms. Thus, given a

location obfuscation level and a semantic tag obfuscation level, our joint approach

uses the same location obfuscation level and the same semantic tag obfuscation

level as the disjoint approach to obfuscate the actual location and its semantic

tag. The only difference between the two approaches is in the way that they select

the cloaking area. Thus, based on the way that the cloaking areas are selected

in these approaches, we can conjecture that in check-in cases where the semantic

dimension of the venue’s location is important to a user, the joint approach can

cause a smaller utility loss compared to the disjoint approach. In fact, as already

discussed in this paper, the semantic dimension of a venue’s location is not only

captured by the semantic tag of the venue but also by the cloaking area that is

selected for obfuscating the location of that venue. Our joint approach tries to

better capture the semantic dimension by selecting a cloaking area that has the

maximum number of semantically compatible regions with the obfuscated seman-

tic tag. To better illustrate this point, we use again the toy examples in Fig. 3

and we add the following assumption to them: region 1 and region 3 are located in
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a neighborhood which is known for its good restaurants and shops (called neigh-

borhood A), whereas region 2 is located in a neighborhood which is known for its

museums and offices (called neighborhood B). Recall that in both toy examples, a

user Alice wants to check-in to venue “Super Duper Burger” on a privacy-aware

LBSN. So, in both toy examples her location’s semantic tag (i.e., “burger joint”) is

replaced by the generalized tag “restaurant” during the semantic tag obfuscation

process. In the toy example of Fig. 3.a, by applying the disjoint approach, her lo-

cation (i.e., region 1) is replaced by the cloaking area made of region 1 and region

2. This cloaking area is located partly in neighborhood A and partly in neigh-

borhood B. On the other hand, in the toy example of Fig. 3.b, by applying the

joint approach, her location (i.e., region 1) is replaced by the cloaking area made

of region 1 and region 3. This cloaking area is located entirely in neighborhood A.

Intuitively, it makes more sense for Alice to inform her friends that she eats in a

restaurant located in neighborhood A (which is known for its good restaurants),

than in a restaurant located either in neighborhood A or in neighborhood B. Ac-

cordingly, the utility loss caused by the joint obfuscation approach is smaller than

the utility loss caused by the disjoint obfuscation approach unless we assume that

the semantic dimension of the neighborhood where the restaurant is located is not

important to Alice. In addition, if the Alice’s purpose behind the check-in is not

sharing the exact location of the restaurant but is sharing the fact that she eats

in a restaurant in neighborhood A, then her purpose is still preserved even after

the location obfuscation is performed by the joint approach and therefore, in this

case the joint obfuscation causes no utility loss.

The fact that our joint approach tries to better capture the semantic dimension

of the venue’s location compared to the disjoint approach is particularly important

if we consider another important result obtained from the user study in [7, 25].

According to this result, the semantic tag obfuscation has a significantly larger

negative impact on utility compared to the location obfuscation for the majority

of check-ins. This implies that the semantic dimension of a venue’s location is

more important to a user than its geographical dimension for the majority of

cases. Accordingly, we expect that the use of the joint approach instead of the

disjoint approach will make a change in terms of utility for many check-ins and

decrease the utility loss.

7. Related Work

The problem of protecting location privacy of users in LBSNs (and in LBSs,

in general) has been extensively studied in the literature and various protection

mechanisms are proposed. Some location privacy protection mechanisms use cryp-

33



tographic operations [15, 24, 10]. However, these schemes usually require technical

modifications of the service. Many of the location privacy protection mechanisms

apply location obfuscation. The popularity of the location obfuscation lies in the

fact that it does not require changing the infrastructure, as it can be performed

entirely on the user’s side [55]. There exist different methods to obfuscate a loca-

tion, for instance, by hiding the location from the LBS [6, 20], by perturbing the

location (e.g., by adding noise to the location coordinates) [2], by generalizing the

location (e.g., by merging the location with nearby locations using a cloaking algo-

rithm) [22, 21, 41, 11, 27, 58, 59, 62] and by adding fake (dummy) locations to the

actual location [12, 28, 30, 8].13 Our work differs from these works by the fact that

it considers not only the obfuscation of location but also the obfuscation of the

semantic information, where the obfuscation of the semantic information is used

to protect not only the semantic location privacy but also the location privacy. In

addition, the location obfuscation in our work is performed with respect to the

obfuscated semantic information, whereas the location obfuscation in these works

is semantic-oblivious.

There exist several works that propose metrics for quantifying location privacy

and define requirements that should be met to ensure successful location obfus-

cation [32, 14, 16, 53, 54, 50]. In particular, in [53, 54, 50] Shokri et al. propose

a framework to quantify location privacy. The framework proposed in this paper

is an extension of Shokri’s framework. However, there exist two main differences

between our framework and the Shokri’s framework. Firstly, contrary to Shokri’s

framework that focuses only on users’ locations and their location privacy, our

framework takes into consideration also the locations’ semantic tags and the users’

semantic location privacy. Secondly, our framework relies on Dynamic Bayesian

Network (DBN) models for implementing the attacks whereas Shokri’s framework

relies on Hidden Markov Models for implementing the attacks. In the case of

Shokri’s framework, relying on Hidden Markov Models for implementing the at-

tacks is fine since the hidden state involves only one type of a user private attribute

(i.e., user’s location). However, as already discussed in Section 3.1, if the hidden

state involves not only location but also other private attributes such as location’s

semantic tag, using Hidden Markov Models for implementing the attacks makes

the inferences more complex and less efficient and it is better to use DBN models.

There exist also a number of works in the literature regarding the interdepen-

dent location privacy problem [38, 39, 49, 56, 23]. This problem is a subcategory

of interdependent privacy problems. Roughly speaking, interdependent privacy

13We refer the interested reader to [31, 57, 51, 52] for detailed surveys on location obfuscation

methods.
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risks arise from the situations where the privacy of an individual is affected by

the actions of other individuals or the data shared by other individuals [26]. For

instance, according to the results of a survey, Foursquare users frequently report

their co-locations with their friends ( e.g., by tagging their friends’ names) while

checking-in to venues [39]. Thus by doing so, they put at risk not only their own lo-

cation privacy but also the location privacy of their friends. In [38, 39], Olteanu et

al. propose a framework to quantify the impact of co-location information on loca-

tion privacy. By running different inference attacks, they show that the co-location

information decreases the location privacy of individuals considerably. They also

propose some countermeasures that mitigate the impact of co-location information

on the location privacy. There are some similarities between their work and our

work. For instance, like our work, their work is built upon Shokri’s framework for

quantifying location privacy [53, 54, 50]). Also, to perform some privacy attacks

they rely on bayesian network models. Thus, by combining our work with their

work, one can build a richer framework for quantifying privacy and can possibly

propose more advanced privacy protection mechanisms.

The semantic dimension of location information has been studied in various

works [33, 37, 17, 61, 4, 35]. For instance, in [33], authors propose an algorithm that

by using machine learning techniques generates semantic tags (labels) for places

based on the timing of visits to those places, nearby businesses and demographics

of the users. In [37], the authors propose a location type classification model that

classifies location types based on the content of users’ check-in tweets. In [17],

the authors present the semantic annotation of location history as a way to better

understand the purpose of a mobile user for visiting the locations. Accordingly,

different methods for semantic annotation of location history are studied. These

methods use the spatiotemporal documents collected from social media (e.g., geo-

tagged tweets) for semantic annotation. In [61], an approach is introduced which

predicts the next location of mobile users based on both the geographic and se-

mantic features of users’ trajectories where the semantic features are extracted by

mining the semantic trajectory patterns for each user. In [4], the authors rely on

semantic labelling techniques to protect users’ identity and their location privacy

in LBSs and LBSNs. More precisely, they argue that many applications are not

interested in (geographical) location data and they can instead use the semantic

information about the locations to perform their tasks. For instance, a virtual

assistant application such as Apple’s Siri or Amazon’s Alexa can be set to notify

the user when she reaches her home or work place and is indifferent as to the geo-

graphical locations of the home and work place. Accordingly, the authors propose

an approach called semantic cloaking in which the user’s geographical locations

are replaced by their semantic labels and then used by different applications. The
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semantic labelling is performed by applying machine learning techniques and by

using several temporal features such as duration of stay at a location and day

of week. As described, the goal of the work in [4] is to provide a mechanism to

protect the users’ identity and location privacy and contrary to our work, it does

not provide a mechanism to protect semantic location privacy.

The problem of protecting semantic location privacy is also studied in the

literature, although to a lesser extent than the problem of protecting location pri-

vacy. For instance, in [60] and [34], cloaking algorithms are proposed that cloak

the actual location by merging it with semantically heterogenous locations (these

algorithms are based on the concept of l-diversity originally proposed in [40]).

In [13], the authors propose a personalized and semantic-aware location cloaking

algorithm. The algorithm adjusts the spatial resolution of the cloaking area based

on the sensitivity of the locations for the user, e.g., near a sensitive location such

as a hospital, it coarsens the spatial resolution more. Our work differs from these

works mainly because of the following fact: to protect the semantic location pri-

vacy, our work considers the obfuscation of both the location information and the

semantic information whereas these works only consider the obfuscation of the

location information.

The disjoint obfuscation approach discussed in this paper, was originally intro-

duced in [1]. Our work is close to the work presented in [1], in the sense that it

assumes a similar system model and adversary model. In fact, our work and the

work in [1] are both built upon the Shokri’s framework for quantifying location

privacy [53, 54, 50]) and they both rely on bayesian network models for imple-

menting the inference attacks. However, as already discussed in this paper, our

work tries to improve the work in [1], by proposing a joint obfuscation approach.

8. Conclusion and Future Work

In this paper, we have introduced a joint semantic tag-location obfuscation

approach for protecting the location privacy and the semantic location privacy of

users in LBSNs (and in LBSs, in general). This approach is designed to overcome

the drawbacks of the existing disjoint approach, by performing the location obfus-

cation based on the result of the semantic tag obfuscation. We provided a formal

framework that can be used for evaluation and comparison of the joint approach

with the disjoint approach. Using a dataset of real-world user mobility traces col-

lected from six different cities, we performed an experimental evaluation to com-

pare the joint approach’s performance with the disjoint approach’s performance

in terms of location privacy protection and semantic location privacy protection.

According to our experimental results, in almost all cases (i.e., in different cities
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and with different obfuscation parameters), the joint approach outperforms the

disjoint approach. We also studied how different parameters (i.e., the obfuscation

parameters and the distribution of the number of venues per region in different

cities) can affect the performance of the obfuscation approaches. In particular,

we showed that compared to the disjoint approach, the joint approach can take

better advantage of higher values of the location obfuscation level, the semantic

tag obfuscation level and the number of venues per region in a city and exhibits

even more satisfactory performance under higher values of these parameters.

As a potential future work, we consider to perform the following improvements

on the current work:

• Adding the Time Periods to the System Model. Venues have opening

hours which are defined based on the time periods (i.e., morning, afternoon,

evening, night). For instance, a restaurant is closed in the morning and is open

in the afternoon. Accordingly, the adversary can filter out the venues in the

cloaking area based on time periods and increase his chance to infer the actual

location and its semantic tag. Thus, to prevent such attacks, the time periods

should also be taken into consideration while building the cloaking areas [1].

• Considering the Semantic Tag Obfuscation Level and the Location

Obfuscation Level as the instantiations of Random Variables. In the

current work, the semantic tag obfuscation level and the location obfuscation

level are considered as parameters whose values remain constant during the

whole observation interval. In a future work, we can assume that these obfus-

cation levels are the instantiations of random variables that can take different

values at each time instant based on user’s utility and privacy preferences. In

fact, as discussed in detail in Section 6, the privacy protection mechanism (PPM)

can use a utility model that for each check-in, predicts the utility loss caused by

using different obfuscation levels. Then, based on the predicted utility losses,

the PPM can select the obfuscation levels that best match the user’s utility and

privacy preferences for that check-in.

• Performance Optimization in Terms of Time and Space Complexity.

The goal of this paper is to present the idea of joint obfuscation and to show

how it can improve the privacy protection compared to the existing disjoint

approach. Thereby, it is beyond the scope of this paper to discuss the time and

space complexity of the obfuscation approaches. Thus, another issue that can

be investigated as future work is to optimize the joint obfuscation algorithm and

compare its performance in terms of time and space complexity with the disjoint

approach.
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Appendix A. A thorough comparison between the present work and

the primary work published as a workshop paper

The work presented in this paper is an extension of the primary work presented

as a workshop paper in [9]. In both papers, we introduce a joint semantic tag-

location obfuscation approach in which location obfuscation is performed based on

the result of the semantic tag obfuscation. In both papers, we present a formal

framework and an experimental evaluation to compare the performance of our

joint obfuscation approach with the performance of the existing solution in the

literature, i.e., the disjoint obfuscation approach. However, the work presented in

the workshop paper is limited in many ways and does not address various issues.

The present paper addresses the issues that are not covered by the workshop paper.

Accordingly, the present paper is a distinct paper from the workshop paper and

contains a significant amount of new material. Below, we list the main additional

contributions of the present paper compared to the workshop paper and we describe

the importance of each contribution:

1. In the workshop paper, we show that the joint obfuscation approach out-

performs the disjoint obfuscation approach only in terms of location privacy,

whereas in the present paper, we show that the joint obfuscation approach out-

performs the disjoint obfuscation approach both in terms of location privacy and

semantic location privacy. As discussed in the present paper, semantic location

privacy is an important aspect of user privacy and is a different concept than the

location privacy. In fact, one of our main goals for designing the joint obfusca-

tion approach was to show that it could better protect both the location privacy

and the semantic location privacy of the users compared to the disjoint obfusca-

tion approach. However, in the primary work presented in the workshop paper,

there is no mention of semantic location privacy and we only show that our joint

obfuscation approach performs better than the disjoint approach in terms of lo-

cation privacy. Thus, the present paper completes the work presented in the

workshop paper by including the semantic location privacy parts. Accordingly,

all sections of the present paper (and not only the experimental evaluation) are

extended to contain information regarding the semantic location privacy. More
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precisely, we modified the abstract and the introduction of the present paper so

that they contain information regarding the semantic location privacy. In the

adversary model in Section 2.5.2 on page 13, we added a new type of attack

(i.e., semantic-tag inference attack) against semantic location privacy of users.

Thus, the adversary model in the present paper performs two types of attacks

(i.e., semantic-tag inference attack and location-inference attack), whereas the

adversary model in the workshop paper only performs one type of attack (i.e.,

location-inference attack). We also added the definitions of new metrics includ-

ing semantic location privacy metric to Section 4.2 on page 19 and ratio of the

semantic location privacy means (denoted by sem-priv-ratio) to Section 5.2 on

page 26. In the experimental evaluation in section 5.2, we added new figures

(i.e., Fig. 7 and Fig. 9 on page 28) which depict the semantic location privacy

results. We also extended the discussions in Section 5.2 so that they cover also

the semantic location privacy results (see pages 26–31). Finally, we extended

the related work in Section 7 (see pages 33–36) and the conclusion and future

work in Section 8 (see pages 36–37), so that they include discussions regarding

the semantic location privacy.

2. In the workshop paper, we compare the performance of our joint obfuscation

approach with the performance of the disjoint obfuscation approach only under

different values of the obfuscation parameters. However, the performance of

these approaches can also be influenced by external factors such as the choice

of the city. Accordingly, we added a new section (i.e. Section 5.2.2 on pages 30–

31) to the present paper, which introduces the evaluation results for different

cities and discusses new figures including Fig. 6.d, Fig. 7.d, Fig. 8.d, Fig. 9.d and

Fig. 10 on page 28. This section also studies how the distribution of the number

of venues per region in a city can affect the performance of the obfuscation

approaches in that city and presents a new metric i.e., the median of the number

of venues per region for a city denoted by MNV.

3. In the workshop paper, there is no discussion regarding the user’s perceived

quality of service (also known as utility). However, from a practical point of

view, it is important to discuss the performance of our joint obfuscation ap-

proach also in terms of utility and compare it with the performance of the

disjoint approach. Accordingly, we added to the present paper a new section

(i.e., Section 6 on pages 31–33), which compares the performance of the obfus-

cation approaches in terms of utility.

4. In the workshop paper, we only mention the names of two dynamic bayesian

network (DBN) inference algorithms that can be used by the adversary for per-
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forming his attacks. However, in the present paper we added a new section (i.e.,

Section 3.2 on page 18), in which we discuss these DBN inference algorithms in

detail. In particular, we discuss the origin of these DBN inference algorithms

and how they work. We also compare the cost and the performance of these

algorithms and recommend the algorithms that can be used for the adversary’s

attacks based on the available resources.

5. In the workshop paper, the obfuscation algorithms are described briefly without

the use of any pseudo-codes or example walkthroughs. In the present paper,

we added pseudo-codes for the obfuscation algorithms (i.e., Algorithm 1 and

Algorithm 2 on page 21) to Section 5.1.3. We also added an example walk-

through of the location obfuscation algorithm to Section 5.1.3. The example

walkthrough begins on the second paragraph of page 24 and ends on the first

paragraph of page 25 and has a figure (i.e., Fig. 5 on page 25). We believe that

these additions can help the readers to get a better understanding of how these

algorithms work.

6. The related work section of the workshop paper is short and limited to a brief

comparison between our joint obfuscation approach and the famous location

privacy protection mechanisms existing in the literature. In the present paper,

new discussions are added to the related work in Section 7 on pages 33–36, in

particular, regarding the interdependent location privacy, semantic tag labelling

and semantic location privacy. Accordingly, the total number of referenced

papers in the present paper is equal to 62 whereas the total number of referenced

papers in the workshop paper is equal to 27. We also added some ideas for future

work to Section 8 on pages 36–37 of the present paper.

7. We improved all sections of the present paper by better explaining our ideas

and by adding more details compared to the workshop paper. In particular, we

added a new figure (i.e., Fig. 2 on page 2) to the introduction section to better

explain the concept of semantic tag hierarchical tree. We also added Table 1 on

page 9 to the system model section. This table summarizes the notations used

throughout the paper. Finally, we added 12 footnotes (i.e., Footnotes 2–13) to

the present paper.
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